- Instructor: He Wang
Email: he.wang@northeastern.edu

Definition.

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called orthogonal iff

$$
\|T(\vec{x})\|=\|\vec{x}\| \text { for all } \vec{x} \in \mathbb{R}^{n}
$$

that is, T preserves the length of vectors. The matrix of an orthogonal transformation is called an orthogonal matrix.

Example 1. Whether or not the following transformations are orthogonal.
(1.) Rotations $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of rotation $S=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
(2.) Reflections $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are orthogonal transformations.

The matrix of reflection matrix $R=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ with $a^{2}+b^{2}=1$ is orthogonal.
(3.) Orthogonal projections $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are NOT orthogonal transformations.

Theorem.

Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{R}^{n}. Then

1. $\|U \cdot \vec{x}\|=\|\vec{x}\|$.
2. $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$.
3. $(U \vec{x}) \cdot(U \vec{y})=0$ if and only if $\vec{x} \cdot \vec{y}=0$.

The transformation $T(\vec{x})=U \vec{x}$ is orthogonal. So, we have 1 .
For 2. $\|U(\vec{x}+\vec{y})\|^{2}=\|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y})=\|\vec{x}\|^{2}+2 \vec{x} \cdot \vec{y}+\|\vec{y}\|^{2}$
$\|U(\vec{x}+\vec{y})\|^{2}=\|U(\vec{x})+U(\vec{y})\|^{2}=\|U(\vec{x})\|^{2}+\|U(\vec{y})\|^{2}+2(U \vec{x}) \cdot(U \vec{y})$.
Compare two formulas, we have $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$.

Proposition.

U is an orthogonal matrix if and only if $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$ for any \vec{x} and \vec{y} in \mathbb{R}^{n}.

The above theorem says that orthogonal transformations preserve dot products, hence also preserve angles and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem.

1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal.
2. If A and B are orthogonal, then $A B$ is orthogonal.

Theorem.

The $n \times n$ matrix U is orthogonal if and only if $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.

Proof. " \Rightarrow " Suppose U is an orthogonal matrix. We prove that $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.
Use the property that U is orthogonal if and only if $(U \vec{x}) \cdot(U \vec{y})=\vec{x} \cdot \vec{y}$. Apply the formula to standard vectors $\vec{x}=\vec{e}_{i}$ and $\vec{y}=\vec{e}_{j}$.
$U \vec{e}_{i}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right]=\vec{u}_{i}$
Hence $\vec{u}_{i} \cdot \vec{u}_{j}=\left(U \vec{e}_{i}\right) \cdot\left(U \vec{e}_{j}\right)=\vec{e}_{i} \cdot \vec{e}_{j}= \begin{cases}0 & \text { when } i \neq j \\ 1 & \text { when } i=j\end{cases}$
So, $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is orthonormal.
" \Leftarrow " Suppose $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set. We show that U is an orthogonal matrix.
For any $\vec{x} \in \mathbb{R}^{n}, U \vec{x}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}$
$\|U \vec{x}\|^{2}=\left(x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}\right) \cdot\left(x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+\cdots+x_{n} \vec{u}_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}=\|\vec{x}\|^{2}$
So, $\|U \vec{x}\|=\|\vec{x}\|$ and hence U is an orthogonal matrix.

Example 2. Verify that the matrix $A=\left[\begin{array}{ccc}1 / \sqrt{6} & -1 / \sqrt{2} & -1 / \sqrt{3} \\ 1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & 1 / \sqrt{3}\end{array}\right]$ is orthogonal.

Verify that $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ is orthonormal by verify that $\vec{a}_{1} \cdot \vec{a}_{2}=0, \vec{a}_{1} \cdot \vec{a}_{3}=0, \vec{a}_{2} \cdot \vec{a}_{3}=0$, and $\left\|\vec{a}_{1}\right\|=\left\|\vec{a}_{2}\right\|=\left\|\vec{a}_{3}\right\|=1$.

Example 3. Verify that the matrix $B=\frac{1}{7}\left[\begin{array}{ccc}2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2\end{array}\right]$ is orthogonal.

Verify that $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ is orthonormal by verify that $\vec{a}_{1} \cdot \vec{a}_{2}=0, \vec{a}_{1} \cdot \vec{a}_{3}=0, \vec{a}_{2} \cdot \vec{a}_{3}=0$, and $\left\|\vec{a}_{1}\right\|=\left\|\vec{a}_{2}\right\|=\left\|\vec{a}_{3}\right\|=1$.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the transpose matrix A^{T} as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$
\vec{v} \cdot \vec{w}=\vec{v}^{T} \vec{w}
$$

Theorem.

The $n \times n$ matrix A is orthogonal if and only if $A^{T} A=I_{n}$; if and only if $A^{-1}=A^{T}$.

Proof. A is orthogonal if and only if $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is orthonormal, i.e., $\vec{a}_{i} \cdot \vec{a}_{j}=1$ if $i \neq j$ and $\left\|\vec{a}_{i}\right\|=1$.
On the other side, (write for the case $n=3$)

$$
A^{T} A=\left[\begin{array}{c}
\vec{a}_{1}^{T} \\
\vec{a}_{2}^{T} \\
\vec{a}_{3}^{T}
\end{array}\right]\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a}_{1}^{T} \vec{a}_{1} & \vec{a}_{1}^{T} \vec{a}_{2} & \vec{a}_{1}^{T} \vec{a}_{3} \\
\vec{a}_{2}^{T} \vec{a}_{1} & \vec{a}_{2}^{T} \vec{a}_{2} & \vec{a}_{2}^{T} \vec{a}_{3} \\
\vec{a}_{3}^{T} \vec{a}_{1} & \vec{a}_{3}^{T} \vec{a}_{2} & \vec{a}_{3}^{T} \vec{a}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \vec{a}_{1} \cdot \vec{a}_{3} \\
\vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} \\
\vec{a}_{3} \cdot \vec{a}_{1} & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3}
\end{array}\right]=I_{3}
$$

Example 4. Find the inverse of matrices in Examples 2 and 3.

$$
\begin{aligned}
& \text { Since they are orthogonal, } A^{-1}=A^{T}=\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{6} & 2 / \sqrt{6} \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right] \text { and } \\
& B^{-1}=B^{T}=\frac{1}{7}\left[\begin{array}{ccc}
2 & 6 & 3 \\
3 & 2 & -6 \\
6 & -3 & 2
\end{array}\right] .
\end{aligned}
$$

Theorem.

Let W be any subspace of \mathbb{R}^{n} with an orthonormal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$. Let $U=$ $\left[\vec{u}_{1} \vec{u}_{2} \cdots \vec{u}_{p}\right]$. For any $\vec{y} \in \mathbb{R}^{n}$,

$$
\operatorname{proj}_{W}(\vec{y})=U U^{T} \vec{y}
$$

That is, the matrix of the projection onto W is $P=U U^{T}$.

Remark: 1. $p<n$ since W is a subspace of \mathbb{R}^{n}. When $p=n$, then $P=I_{n}$.
2. We always have $U^{T} U=I$ for orthonormal basis $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$.

The theorem comes from the following formula from $\S 5.1$. The idea is to translate dot product to matrix product.

$$
\begin{aligned}
& \operatorname{proj}_{W}(\vec{y})=\left(\vec{y} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\left(\vec{y} \cdot \vec{u}_{2}\right) \vec{u}_{2}+\cdots+\left(\vec{y} \cdot \vec{u}_{p}\right) \vec{u}_{p} \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{y} \cdot \vec{u}_{1} \\
\vec{y} \cdot \vec{u}_{2} \\
\vdots \\
\vec{y} \cdot \vec{u}_{p}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1} \cdot \vec{y} \\
\vec{u}_{2} \cdot \vec{y} \\
\vdots \\
\vec{u}_{p} \cdot \vec{y}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \vec{y} \\
\vec{u}_{2}^{T} \vec{y} \\
\vdots \\
\vec{u}_{p}^{T} \vec{y}
\end{array}\right] \\
&=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{p}^{T}
\end{array}\right] \\
& \vec{y}
\end{aligned}
$$

Example 5.

