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Definition.

A linear transformation T : Rn → Rn is called orthogonal iff

||T (~x)|| = ||~x|| for all ~x ∈ Rn

that is, T preserves the length of vectors. The matrix of an orthogonal transformation
is called an orthogonal matrix.

Example 1. Whether or not the following transformations are orthogonal.

(1.) Rotations S : R2 → R2 are orthogonal transformations.

The matrix of rotation S =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal.

(2.) Reflections R : R2 → R2 are orthogonal transformations.

The matrix of reflection matrix R =

[
a b
b −a

]
with a2 + b2 = 1 is orthogonal.

(3.) Orthogonal projections P : R2 → R2 are NOT orthogonal transformations.

Theorem.

Let U be an n× n orthogonal matrix and let ~x and ~y be any vectors in Rn. Then

1. ||U · ~x|| = ||~x||.

2. (U~x) · (U~y) = ~x · ~y.

3. (U~x) · (U~y) = 0 if and only if ~x · ~y = 0.

The transformation T (~x) = U~x is orthogonal. So, we have 1.
For 2. ||U(~x+ ~y)||2 = ||~x+ ~y||2 = (~x+ ~y) · (~x+ ~y) = ||~x||2 + 2~x · ~y + ||~y||2
||U(~x+ ~y)||2 = ||U(~x) + U(~y)||2 = ||U(~x)||2 + ||U(~y)||2 + 2(U~x) · (U~y).
Compare two formulas, we have (U~x) · (U~y) = ~x · ~y.

Proposition.

U is an orthogonal matrix if and only if (U~x) · (U~y) = ~x · ~y for any ~x and ~y in Rn.
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The above theorem says that orthogonal transformations preserve dot products, hence
also preserve angles and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem.

1. If A is orthogonal, then A is invertible and A−1 is orthogonal.
2. If A and B are orthogonal, then AB is orthogonal.

Theorem.

The n× n matrix U is orthogonal if and only if {~u1, . . . , ~un} is an orthonormal set.

Proof. “⇒” Suppose U is an orthogonal matrix. We prove that {~u1, . . . , ~un} is an
orthonormal set.
Use the property that U is orthogonal if and only if (U~x) · (U~y) = ~x · ~y. Apply the
formula to standard vectors ~x = ~ei and ~y = ~ej.

U~ei = [u1 u2 · · · un]


0
...
1
...
0

 = ~ui

Hence ~ui · ~uj = (U~ei) · (U~ej) = ~ei · ~ej =

{
0 when i 6= j

1 when i = j

So, {~u1, . . . , ~un} is orthonormal.
“⇐” Suppose {~u1, . . . , ~un} is an orthonormal set. We show that U is an orthogonal
matrix.

For any ~x ∈ Rn, U~x = [u1 u2 · · · un]


x1
x2
...
xn

 = x1~u1 + x2~u2 + · · ·+ xn~un

||U~x||2 = (x1~u1 +x2~u2 + · · ·+xn~un) · (x1~u1 +x2~u2 + · · ·+xn~un) = x21 + · · ·+x2n = ||~x||2
So, ||U~x|| = ||~x|| and hence U is an orthogonal matrix.
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Example 2. Verify that the matrix A =

1/
√

6 −1/
√

2 −1/
√

3

1/
√

6 1/
√

2 −1/
√

3

2/
√

6 0 1/
√

3

 is orthogonal.

Verify that {~a1,~a2,~a3} is orthonormal by verify that ~a1 ·~a2 = 0, ~a1 ·~a3 = 0, ~a2 ·~a3 = 0,
and ||~a1|| = ||~a2|| = ||~a3|| = 1.

Example 3. Verify that the matrix B =
1

7

2 3 6
6 2 −3
3 −6 2

 is orthogonal.

Verify that {~a1,~a2,~a3} is orthonormal by verify that ~a1 ·~a2 = 0, ~a1 ·~a3 = 0, ~a2 ·~a3 = 0,
and ||~a1|| = ||~a2|| = ||~a3|| = 1.

Recall the transpose of a matrix: Given an m×n matrix A, we define the transpose matrix
AT as the n×m matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can
be written as matrix product

~v · ~w = ~vT ~w

Theorem.

The n× n matrix A is orthogonal if and only if ATA = In; if and only if A−1 = AT .

Proof. A is orthogonal if and only if {~a1, . . . ,~an} is orthonormal, i.e., ~ai · ~aj = 1 if
i 6= j and ||~ai|| = 1.
On the other side, (write for the case n = 3)

ATA =

~a
T
1

~aT2
~aT3

 [~a1 ~a2 ~a3
]

=

~a
T
1~a1 ~aT1~a2 ~aT1~a3

~aT2~a1 ~aT2~a2 ~aT2~a3

~aT3~a1 ~aT3~a2 ~aT3~a3

 =

~a1 · ~a1 ~a1 · ~a2 ~a1 · ~a3
~a2 · ~a1 ~a2 · ~a2 ~a2 · ~a3
~a3 · ~a1 ~a3 · ~a2 ~a3 · ~a3

 = I3

Example 4. Find the inverse of matrices in Examples 2 and 3.

Since they are orthogonal, A−1 = AT =

 1/
√

6 1/
√

6 2/
√

6

−1/
√

2 1/
√

2 0

−1/
√

3 −1/
√

3 1/
√

3

 and

B−1 = BT =
1

7

2 6 3
3 2 −6
6 −3 2

.
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Theorem.

Let W be any subspace of Rn with an orthonormal basis {~u1, . . . , ~up}. Let U =
[~u1 ~u2 · · · ~up]. For any ~y ∈ Rn,

projW (~y) = UUT~y.

That is, the matrix of the projection onto W is P = UUT .

Remark: 1. p < n since W is a subspace of Rn. When p = n, then P = In.

2. We always have UTU = I for orthonormal basis {~u1, . . . , ~up}.

The theorem comes from the following formula from §5.1. The idea is to translate dot
product to matrix product.

projW (~y) = (~y · ~u1)~u1 + (~y · ~u2)~u2 + · · ·+ (~y · ~up)~up

= [~u1 ~u2 · · · ~up]


~y · ~u1
~y · ~u2

...
~y · ~up



= [~u1 ~u2 · · · ~up]


~u1 · ~y
~u2 · ~y

...
~up · ~y



= [~u1 ~u2 · · · ~up]


~uT1 ~y
~uT2 ~y

...
~uTp ~y



= [~u1 ~u2 · · · ~up]


~uT1
~uT2
...
~uTp

 ~y
= UUT~y

Example 5.
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