• Instructor: He Wang Email: he.wang@northeastern.edu

Definition.

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is called **orthogonal** iff

 $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathbb{R}^n$

that is, T preserves the length of vectors. The matrix of an orthogonal transformation is called an **orthogonal matrix**.

Example 1. Whether or not the following transformations are orthogonal.

(1.) Rotations $S : \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of rotation $S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

(2.) Reflections $R : \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of reflection matrix $R = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ with $a^2 + b^2 = 1$ is orthogonal.

(3.) Orthogonal projections $P : \mathbb{R}^2 \to \mathbb{R}^2$ are NOT orthogonal transformations.

Theorem.

Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{R}^n . Then

- 1. $||U \cdot \vec{x}|| = ||\vec{x}||.$
- 2. $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$.
- 3. $(U\vec{x}) \cdot (U\vec{y}) = 0$ if and only if $\vec{x} \cdot \vec{y} = 0$.

The transformation $T(\vec{x}) = U\vec{x}$ is orthogonal. So, we have 1. For 2. $||U(\vec{x}+\vec{y})||^2 = ||\vec{x}+\vec{y}||^2 = (\vec{x}+\vec{y}) \cdot (\vec{x}+\vec{y}) = ||\vec{x}||^2 + 2\vec{x}\cdot\vec{y} + ||\vec{y}||^2$ $||U(\vec{x} + \vec{y})||^{2} = ||U(\vec{x}) + U(\vec{y})||^{2} = ||U(\vec{x})||^{2} + ||U(\vec{y})||^{2} + 2(U\vec{x}) \cdot (U\vec{y}).$ Compare two formulas, we have $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$.

Proposition.

U is an orthogonal matrix if and only if $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$ for any \vec{x} and \vec{y} in \mathbb{R}^n .

 $x_n^2 = ||\vec{x}||^2$

The above theorem says that orthogonal transformations **preserve dot products**, hence also **preserve angles** and orthogonality.

Using the geometric meaning of the orthogonal transformation, we have

Theorem.

- 1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal.
- 2. If A and B are orthogonal, then AB is orthogonal.

Theorem.

The $n \times n$ matrix U is orthogonal if and only if $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set.

Proof. " \Rightarrow " Suppose U is an orthogonal matrix. We prove that $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set.

Use the property that U is orthogonal if and only if $(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$. Apply the formula to standard vectors $\vec{x} = \vec{e_i}$ and $\vec{y} = \vec{e_j}$.

$$U\vec{e_i} = \begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{vmatrix} \vdots \\ 1 \\ \vdots \\ 0 \end{vmatrix} = \vec{u_i}$$

[0]

Hence $\vec{u}_i \cdot \vec{u}_j = (U\vec{e}_i) \cdot (U\vec{e}_j) = \vec{e}_i \cdot \vec{e}_j = \begin{cases} 0 & \text{when } i \neq j \\ 1 & \text{when } i = j \end{cases}$

So, $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is orthonormal.

" \Leftarrow " Suppose $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set. We show that U is an orthogonal matrix.

For any
$$\vec{x} \in \mathbb{R}^n$$
, $U\vec{x} = \begin{bmatrix} u_1 \ u_2 \ \cdots \ u_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \vec{u}_1 + x_2 \vec{u}_2 + \cdots + x_n \vec{u}_n$
 $||U\vec{x}||^2 = (x_1 \vec{u}_1 + x_2 \vec{u}_2 + \cdots + x_n \vec{u}_n) \cdot (x_1 \vec{u}_1 + x_2 \vec{u}_2 + \cdots + x_n \vec{u}_n) = x_1^2 + \cdots +$
So, $||U\vec{x}|| = ||\vec{x}||$ and hence U is an orthogonal matrix.

He Wang

Example 2. Verify that the matrix $A = \begin{bmatrix} 1/\sqrt{6} & -1/\sqrt{2} & -1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{bmatrix}$ is orthogonal.

Verify that $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ is orthonormal by verify that $\vec{a}_1 \cdot \vec{a}_2 = 0, \vec{a}_1 \cdot \vec{a}_3 = 0, \vec{a}_2 \cdot \vec{a}_3 = 0, and <math>||\vec{a}_1|| = ||\vec{a}_2|| = ||\vec{a}_3|| = 1.$

Example 3. Verify that the matrix
$$B = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}$$
 is orthogonal.

Verify that $\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$ is orthonormal by verify that $\vec{a}_1 \cdot \vec{a}_2 = 0$, $\vec{a}_1 \cdot \vec{a}_3 = 0$, $\vec{a}_2 \cdot \vec{a}_3 = 0$, and $||\vec{a}_1|| = ||\vec{a}_2|| = ||\vec{a}_3|| = 1$.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the **transpose matrix** A^T as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$$

Theorem.

The $n \times n$ matrix A is orthogonal if and only if $A^T A = I_n$; if and only if $A^{-1} = A^T$.

Proof. A is orthogonal if and only if $\{\vec{a}_1, \ldots, \vec{a}_n\}$ is orthonormal, i.e., $\vec{a}_i \cdot \vec{a}_j = 1$ if $i \neq j$ and $||\vec{a}_i|| = 1$.

On the other side, (write for the case n = 3)

$$A^{T}A = \begin{bmatrix} \vec{a}_{1}^{T} \\ \vec{a}_{2}^{T} \\ \vec{a}_{3}^{T} \end{bmatrix} \begin{bmatrix} \vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} \end{bmatrix} = \begin{bmatrix} \vec{a}_{1}^{T}\vec{a}_{1} & \vec{a}_{1}^{T}\vec{a}_{2} & \vec{a}_{1}^{T}\vec{a}_{3} \\ \vec{a}_{2}^{T}\vec{a}_{1} & \vec{a}_{2}^{T}\vec{a}_{2} & \vec{a}_{2}^{T}\vec{a}_{3} \\ \vec{a}_{3}^{T}\vec{a}_{1} & \vec{a}_{3}^{T}\vec{a}_{2} & \vec{a}_{3}^{T}\vec{a}_{3} \end{bmatrix} = \begin{bmatrix} \vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \vec{a}_{1} \cdot \vec{a}_{3} \\ \vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \vec{a}_{2} \cdot \vec{a}_{3} \\ \vec{a}_{3} \cdot \vec{a}_{1} & \vec{a}_{3} \cdot \vec{a}_{2} & \vec{a}_{3} \cdot \vec{a}_{3} \end{bmatrix} = I_{3}$$

Example 4. Find the inverse of matrices in Examples 2 and 3.

Since they are orthogonal,
$$A^{-1} = A^T = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$
 and
$$B^{-1} = B^T = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{bmatrix}.$$

Theorem.

Let W be any subspace of \mathbb{R}^n with an orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$. Let $U = [\vec{u}_1 \ \vec{u}_2 \cdots \vec{u}_p]$. For any $\vec{y} \in \mathbb{R}^n$,

$$\operatorname{proj}_W(\vec{y}) = UU^T \vec{y}.$$

That is, the **matrix of the projection** onto W is $P = UU^T$.

Remark: 1. p < n since W is a subspace of \mathbb{R}^n . When p = n, then $P = I_n$.

2. We always have $U^T U = I$ for orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$.

The theorem comes from the following formula from §5.1. The idea is to translate dot product to matrix product.

$$\begin{aligned} \operatorname{proj}_{W}(\vec{y}) &= (\vec{y} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{y} \cdot \vec{u}_{2})\vec{u}_{2} + \dots + (\vec{y} \cdot \vec{u}_{p})\vec{u}_{p} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{y} \cdot \vec{u}_{1} \\ \vec{y} \cdot \vec{u}_{2} \\ \vdots \\ \vec{y} \cdot \vec{u}_{p} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1} \cdot \vec{y} \\ \vec{u}_{2} \cdot \vec{y} \\ \vdots \\ \vec{u}_{p} \cdot \vec{y} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1}^{T} \vec{y} \\ \vec{u}_{2}^{T} \vec{y} \\ \vdots \\ \vec{u}_{p}^{T} \vec{y} \end{bmatrix} \\ &= [\vec{u}_{1} \ \vec{u}_{2} \ \cdots \ \vec{u}_{p}] \begin{bmatrix} \vec{u}_{1}^{T} \\ \vec{u}_{2}^{T} \\ \vdots \\ \vec{u}_{p}^{T} \end{bmatrix} \vec{y} \\ &= UU^{T} \vec{y} \end{aligned}$$

Example 5.