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85.2 Gram-Schmidt Process and QR Factorization

Example 1. Find an orthogonal basis for the subspace
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Example 2. Find an orthogonal basis for the subspace
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The Gram-Schmidt process is an algorithm that produces an orthogonal (or orthonormal)
basis for any subspace W of R™ by starting with any basis for WW.



Math 2331 85.2 Gram-Schmidt Process and QR Factorization He Wang

Theorem. [Gram-Schmidt (Orthogonalize)]

—

Let W be a subspace of R™ and let 51, e ,gp be a basis for W. Define vectors v, .. ., 7,
as

U1 -0 Vg - U2
5 _g bp'Ul bp Vg _, bp'Up_l N
Up=0p— o=V — 55 V2— i — -1
U1 -1 2+ U2 Up—1 * Up—1
Then {¥),...,7,} is an orthogonal basis for W and

Span{by, - - - , by} = Span{dy, - , Ui}

forand k=1,....,p.

From the formulas we can see that v, = EQL relative to l;l.
7y = bt relative to Span(by, by).

Uy = I;Zi relative to Span(l;l, I;Q, ey bis1).

Theorem. [Gram-Schmidt (Normalize)]

If {¢,...,7,} is an orthogonal basis for W, then {uy,...,4,} is an orthonormal basis
Uj .

for W, Where, Ul = W for i = 1, N B
U;

orthogonalize normalize

Basis ————— Orthogonal basis ————— Orthonormal basis.

Example 3. Using Gram-Schmidt Process to find an orthonormal basis for
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{¥, Uy, U3} is already a basis for V since it is independent.

Vi B, w0 ol by

Since v; is already used in the question, in the solution, we changed the formulas. Another
(better) way is rewrite the letters in the question as b;.

Let us rewrite the solution of Example 3 here.

Rewrite Example 3 Using Gram-Schmidt Process to find an orthonormal basis for

V = Span{ b, =

DO =
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,bgz 4 ,bgz 2
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1
vy =b; = |1
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{¥1, U, U3} is an orthogonal basis for V.
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{1y, Uy, 13} is an orthonormal basis for V.

Example 4. Using Gram-Schmidt Process to find an orthonormal basis for

V = Span b, =

{¥, 7} is an orthogonal basis for V.
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{, 1>} is an orthonormal basis for V.
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e Note that the formula for computing v; for any ¢ = 2,3, ..., p can be written as
U; = b; — projgl(bi) — proj *Q(bi) - projﬁi_l(bi)
= bi — projspan{ﬁhmﬁwl} bz)
So, 7; = b respect to Span{#,...,T_1}.
e This formula is inductive in that the computation of v; relies on the vectors vy, ..., U;_1.

(QR-Factorization.
() R-Factorization is the matrix version of the Gram-Schmidt process.

Recall the Gram-Schmidt process:

d orthogonalize — normalize
by} LUy}

Basis 2 = {by, .. Orthogonal basis ¥ = {7, ..

Orthonormal basis % = {u1, ..., uU,}.

Given a vector in W, let’s compare their coordinates:

Each matrix defines an isomorphism. So, M = QR.

—

Here M = [by ... l;p] and Q = [Uy, ..., q,).

Theorem.
Given a n x p matrix M = [by ... gp] with independent columns. There is a unique
decomposition
M=QR
where, () = [i1,. .., U,] has orthonormal columns and R is an p X p upper triangular
matrix with
ri = ||| fori=1,....,p and 1 :ﬁi-gj for 1 < j.
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In particular when p = 3, the upper triangular matrix R is

1 Ti2 T3 H271|| Uy - 52 Uy - lis
R=10 1ryp rm3|=1 0 ||Ua|| s - bs
0 0 s 0 0 || U5

Proof(for p = 3): From Gram-Schmidt process, write b; as linear combinations of ;.

by = ¥, = ||01]|

7 - 52 U1q
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Uy
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|| ]]2 || T2 |2
So,
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Example 5. Find the QR-factorization of the matrix M = |1 4 2|. (Use modified
2 6 6
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Example 6. Using Gram-Schmidt Process to find the () R-factorization of the matrix M =
10
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