- Instructor: He Wang Email: he.wang@northeastern.edu

In §2.2, we defined dot product, norm(length), orthogonal(perpendicular) and angle.

Definition. [Distance Between Vectors]

The distance $\operatorname{dist}(\vec{u}, \vec{v})$ between vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ is defined as

$$
\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}}
$$

Note that $\operatorname{dist}(\vec{u}, \vec{v}) \geq 0$ for any pair of vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$.
$\operatorname{dist}(\vec{u}, \vec{v})=0$ if and only if $\vec{u}=\vec{v}$.
$\operatorname{dist}(\vec{u}, \vec{v})=\operatorname{dist}(\vec{v}, \vec{u})$.

Theorem. [Pythagorean Theorem]

Two vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are orthogonal if and only if they satisfy the Pythagorean Relation

$$
\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2} .
$$

Proof: Two vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are orthogonal if and only if $\vec{u} \cdot \vec{v}=0$. $\|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{v} \cdot \vec{v}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}+2 \vec{u} \cdot \vec{v}$

Theorem. [Cauchy-Schwarz inequality]

$$
|\vec{x} \cdot \vec{y}| \leq\|\vec{x}| | \cdot\| \vec{y} \|
$$

Proof: First, we have $\vec{y}=\operatorname{proj}_{\vec{x}}(\vec{y})+\vec{y}^{\perp}$.

$$
\|\vec{y}\|^{2}=\vec{y} \cdot \vec{y}=\left\|\operatorname{proj}_{\vec{x}}(\vec{y})\right\|^{2}+\left\|\vec{y}^{\perp}\right\|^{2}=\frac{(\vec{y} \cdot \vec{x})^{2}}{\vec{x} \cdot \vec{x}}+\left\|\vec{y}^{\perp}\right\|^{2} \geq \frac{(\vec{y} \cdot \vec{x})^{2}}{\vec{x} \cdot \vec{x}}
$$

Hence $\|\vec{y}\|^{2}\|\vec{x}\|^{2} \geq(\vec{x} \cdot \vec{y})^{2}$. That is $|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\| \cdot\|\vec{y}\|$.
The equality holds if and only if $\vec{y}^{\perp}=\overrightarrow{0}$.

Recall that

$$
\cos \theta=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \cdot\|\vec{y}\|}
$$

$|\vec{x} \cdot \vec{y}|=||\vec{x}|| \cdot\|\vec{y}\|$ if and only \vec{x} and \vec{y} in the same or opposite direction.
Example 1. Find the norm, angle, and distance between vectors $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$

$$
\|\overrightarrow{\mathrm{r}}\|=\sqrt{9+1+1}=\sqrt{11} \quad\left\|\vec{\rightharpoonup}_{2}\right\|=\sqrt{1+4+1}=\sqrt{6}
$$

$\theta=\arccos \frac{\vec{v}_{1} \cdot \vec{r}_{2}}{\left\|\vec{v}_{1}\right\| \vec{V}_{2} \|}=\arccos \frac{0}{\sqrt{\pi} \sqrt{6}}=\frac{\pi}{2}$
$\overrightarrow{V_{1}}-\overrightarrow{V_{2}}=\left[\begin{array}{c}4 \\ -1 \\ 0\end{array}\right]$
Chare $\left(\vec{r}, \overrightarrow{r_{2}}\right)=\left\|\vec{r}-\overrightarrow{C_{2}}\right\|=\sqrt{16+1}=\sqrt{17}$

Definition. [Orthogonal Set]

A set $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ of vectors in \mathbb{R}^{n} is called orthogonal if $\vec{u}_{i} \cdot \vec{u}_{j}=0$ for any choice of indices $i \neq j$.

Theorem.

- Orthogonal vectors are linear independent.
- Orthonormal vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ in \mathbb{R}^{n} form a basis of \mathbb{R}^{n}.

Definition.

- An orthogonal basis for a subspace W of \mathbb{R}^{n} is any basis for W which is also an orthogonal set.
- If each vector is a unit vector in an orthogonal basis, then it is an orthonormal basis.

Example 2. Is the set $\mathscr{B}=\left\{\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]\right\}$ is an orthogonal basis for \mathbb{R}^{3} ? If it is, normalize this basis.
$\left.\begin{aligned} & \overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=0 \\ & \overrightarrow{v_{1}} \cdot \overrightarrow{v_{3}}=0 \\ & \overrightarrow{v_{2}} \cdot \vec{v}_{3}=0\end{aligned} \right\rvert\,$ So B is an orthogonal basis) for \mathbb{R}^{3}

$$
\overrightarrow{u_{1}}=\frac{\vec{k}}{\|\vec{v}\|}=\frac{1}{\sqrt{\|}}\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{u_{2}}=\frac{\overrightarrow{\vec{z}_{2}}}{\left\|\overrightarrow{v_{2}}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right], \quad \overrightarrow{u_{3}}=\frac{\overrightarrow{v_{3}}}{\left\|\overrightarrow{\vec{b}_{3}}\right\|}=\frac{1}{\sqrt{66}}\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right]
$$

Theorem. [Coordinates with respect to an orthogonal basis]

Let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}, and let \vec{y} be any vector in W. Then

$$
\vec{y}=\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\cdots+\left(\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}}\right) \vec{u}_{p}
$$

If $W=\mathbb{R}^{n}$, then the \mathscr{B}-coordinates of \vec{y} are given by:

$$
[\vec{y}]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \quad \text { with } \quad c_{i}=\frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}}=\frac{\vec{y} \cdot \vec{u}_{i}}{\left\|\vec{u}_{i}\right\|^{2}}
$$

Let $\mathscr{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}, and let \vec{y} be any vector in W. Then

$$
\vec{y}=\left(\vec{y} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\cdots+\left(\vec{y} \cdot \vec{u}_{p}\right) \vec{u}_{p}
$$

Example 3. Find the coordinate of $\vec{y}=\left[\begin{array}{c}6 \\ 1 \\ -8\end{array}\right]$ relative basis of \mathbb{R}^{3} in Example 1.

$$
\begin{aligned}
& c_{1}=\frac{\vec{y} \cdot \overrightarrow{v_{1}}}{\vec{v} \cdot \overrightarrow{v_{1}}}=\frac{11}{11}=1 \\
& G_{2}=\frac{\vec{y} \cdot \overrightarrow{v_{2}}}{\overrightarrow{r_{2}} \cdot \overrightarrow{v_{2}}}=\frac{-12}{6}=-2 \\
& \text { So } \quad \mid \vec{y}]_{B}=\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right] \\
& C_{3}=\frac{\vec{y} \cdot \overrightarrow{V_{3}}}{\sqrt{3} \cdot \sqrt{3}}=\frac{-66}{66}=-1
\end{aligned}
$$

Example 4. Is the set $\mathscr{B}=\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$ is an orthogonal basis for \mathbb{R}^{3} ? If it is, normalize this basis. Find the coordinate of $\vec{y}=\left[\begin{array}{c}0 \\ -4 \\ 5 \\ 0\end{array}\right]$ relative to \mathscr{B}.

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{u_{1}} \cdot \overrightarrow{v_{2}}=0 \\
\overrightarrow{\vec{v}_{1}} \cdot \overrightarrow{\vec{b}}=0
\end{array} \quad \Rightarrow \text { ortheonal best). } \quad \overrightarrow{u_{1}}=\frac{\vec{u}}{\left\|\overrightarrow{V_{1}}\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right] \\
& \overrightarrow{\vec{v}_{2}} \cdot \overrightarrow{\vec{V}_{3}}=0 \quad \vec{u}_{i}=\frac{\overrightarrow{v_{2}}}{\left\|\vec{V}_{2}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
y \\
0 \\
0
\end{array}\right] \\
& {[\vec{y}]_{B}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]} \\
& \vec{u}_{3}=\frac{\vec{v}_{3}}{\left\|\overrightarrow{v_{3}}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right] \\
& C_{1}=\frac{\vec{y} \cdot \overrightarrow{v_{1}}}{\overrightarrow{V_{1}} \cdot \vec{v}_{1}}=\frac{6}{6}=1 \\
& c_{2}=\frac{\vec{y} \cdot \overrightarrow{V_{2}}}{\vec{\lambda} \vec{W}_{3}}=\frac{4}{2}=2 \\
& \text { So } \quad(\vec{y})_{B}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& C_{3}=\frac{\vec{y} \cdot \vec{T}_{3}}{\overrightarrow{V_{3}} \overrightarrow{T_{3}}}=\frac{9}{3}=3
\end{aligned}
$$

We defined the Orthogonal Projection Onto A Line in $\S 2.2$:

Let $L=\operatorname{Span}\{\vec{w}\}$ be the line in \mathbb{R}^{n} spanned by $\vec{w} \in \mathbb{R}^{n}$. For a given vector $\vec{y} \in \mathbb{R}^{n}$, the vector

$$
y^{\|}=\operatorname{proj}_{L}(\vec{y}):=\left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}
$$

is called the orthogonal projection of \vec{y} onto L (or onto \vec{w}) and

$$
\vec{y}^{\perp}:=\vec{y}-\operatorname{proj}_{L}(\vec{y})
$$

the component of \vec{y} orthogonal to L (or \vec{w}).

We can define the orthogonal projection on to an plane.

More generally, given a subspace W of \mathbb{R}^{n} and a vector $\vec{y} \in \mathbb{R}^{n}$, we can ask if/how one can find a decomposition of \vec{y} as

$$
\vec{y}=\operatorname{proj}_{W}(\vec{y})+\vec{y}^{\perp}
$$

with $\operatorname{proj}_{W}(\vec{y}) \in W$ (the orthogonal projection of \vec{y} on to W) and \vec{y}^{\perp} is the component of \vec{y} perpendicular to W.

Theorem. Orthogonal Decomposition

Let W be any subspace of \mathbb{R}^{n} and let $\vec{y} \in \mathbb{R}^{n}$ be any vector. Then there exists a unique decomposition

$$
\vec{y}=\operatorname{proj}_{W}(\vec{y})+\vec{y}^{\perp}
$$

with $\operatorname{proj}_{W}(\vec{y}) \in W$ and \vec{y}^{\perp} is perpendicular to W.

Theorem. Orthogonal Decomposition

If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal basis for W, then

$$
\operatorname{proj}_{W}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}\right) \vec{u}_{1}+\cdots+\left(\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}}\right) \vec{u}_{p}
$$

and $\vec{y}^{\perp}=\vec{y}-\operatorname{proj}_{W}(\vec{y})$.
Example 5. Let V be a subspace of \mathbb{R}^{3} spanned by $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$. Find the orthogonal projection of $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ on to V and find the orthogonal component of \vec{y}.

$$
\begin{aligned}
& \operatorname{PPO}_{V} \cdot \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\overrightarrow{u_{1}} \cdot \overrightarrow{u_{1}}} \cdot \overrightarrow{\vec{u}_{1}}+\frac{\vec{y} \cdot \overrightarrow{u_{2}}}{\overrightarrow{u_{2}} \cdot \overrightarrow{u_{2}}} \overrightarrow{u_{2}}=\frac{5}{2}\left[\begin{array}{c}
1 \\
2 \\
2
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right] \\
& \vec{y}^{\perp}=\vec{y}-p r g_{V} \vec{y}=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]-\left[\begin{array}{l}
2 \\
子
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Definition. [Orthogonal Complements]

Given a nonempty subset (finite or infinite) W of \mathbb{R}^{n}, we define its orthogonal complement W^{\perp} (pronounced " W perp") as the set of all vectors $\vec{v} \in \mathbb{R}^{n}$ such that

$$
\vec{v} \cdot \vec{w}=0, \quad \text { for } \quad \text { all } \vec{w} \in W
$$

Expressed in set notation:

$$
W^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n} \mid \vec{v} \cdot \vec{w}=0 \text { for all } \vec{w} \in W\right\}
$$

Example 6. Find a basis for V^{\perp}, where $V=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ 5 \\ 2 \\ -5\end{array}\right],\left[\begin{array}{c}2 \\ 10 \\ 6 \\ -2\end{array}\right]\right\}$

$$
\left.\left.\left.\begin{array}{rl}
V^{\perp} & =\left\{\begin{array}{l|l}
\vec{x} \in \mathbb{R}^{4} & \begin{array}{l}
\vec{x} \cdot \overrightarrow{v_{1}}=0 \\
\vec{x} \cdot \overrightarrow{v_{2}}=0 \\
\overrightarrow{x_{2}} \cdot \overrightarrow{v_{3}}=0
\end{array}
\end{array}\right\} \\
& =\left\{\vec{x} \in \mathbb{R}^{+} \left\lvert\, \begin{array}{l}
2 x_{3}+8 x_{4}=0 \\
x_{1}+5 x_{2}+2 x_{3}-5 x_{4}=0 \\
2 x_{1}+10 x_{2}+6 x_{3}-2 x_{4}=0
\end{array}\right.\right.
\end{array}\right\} \quad \begin{array}{lccc}
0 & 0 & 2 & 8 \\
1 & 5 & 2 & -5 \\
2 & 10 & 6 & -2
\end{array}\right] \quad \text { So, } V^{\perp}=\operatorname{ker}(A) \text { which has a basis }\left\{\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
13 \\
0 \\
-4 \\
1
\end{array}\right]\right\} .
$$

Theorem.

Let W be a subset of \mathbb{R}^{n}. Let $V=\operatorname{Span}(W)$, then

1. $V^{\perp}=W^{\perp}$
2. If $V=\operatorname{Span}(\mathscr{B})$, then $V^{\perp}=\mathscr{B}^{\perp}$
3. W^{\perp} is a subspace of \mathbb{R}^{n} (even when W is not).
4. $\left(V^{\perp}\right)^{\perp}=V$.
5. $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.

Let A be an $m \times n$ matrix.

The row space of A is $\operatorname{Row}(A)$, spanned by the row vectors of A.
The column space of A is $\operatorname{Col}(A)$, so $\operatorname{Col}(A)=\operatorname{im}(A)$.
The kernel of A is also called the null space of A, denoted $\operatorname{Nul}(A)$.

Theorem.

Let A be an $m \times n$ matrix, then

$$
(\operatorname{Row} A)^{\perp}=\operatorname{ker}(A)
$$

Theorem.

Let A be an $m \times n$ matrix, then

$$
(\operatorname{im} A)^{\perp}=\operatorname{ker} A^{T} .
$$

Example 7. In Example 6, $A=\left[\begin{array}{cccc}0 & 0 & 2 & 8 \\ 1 & 5 & 2 & -5 \\ 2 & 10 & 6 & -2\end{array}\right]$ then

$$
V=\text { Row } A=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
0 \\
2 \\
8
\end{array}\right],\left[\begin{array}{c}
1 \\
5 \\
2 \\
-5
\end{array}\right],\left[\begin{array}{c}
2 \\
10 \\
6 \\
-2
\end{array}\right]\right\}
$$

Example 8. Let V be a subspace of \mathbb{R}^{3} spanned by $\vec{v}_{1}=\left[\begin{array}{c}2 \\ -2 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right]$.
(1) Is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ an orthogonal basis for V ?

Yes, since $\vec{v}_{1} \cdot \vec{v}_{2}=0$.
(2). Find the decomposition of $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right]$ as $\vec{y}=\vec{y}_{1}+\vec{y}_{2}$ such that $\vec{y}_{1} \in V$ and $\vec{y}_{2} \in V^{\perp}$.

$$
\begin{aligned}
& \vec{y}_{1}=\operatorname{proj} \vec{y}_{V}=\left(\frac{\vec{y} \cdot \overrightarrow{v_{1}}}{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}}\right) \overrightarrow{v_{1}}+\left(\frac{\vec{y} \cdot \overrightarrow{v_{2}}}{\overrightarrow{v_{2}} \overrightarrow{\vec{v}_{2}}}\right) \overrightarrow{v_{2}}=\left(\frac{1}{9}\right)\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0
\end{array}\right]+\left(\frac{11}{9}\right)\left[\begin{array}{c}
1 \\
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
13 / 9 \\
299 \\
23 / 9 \\
0
\end{array}\right] \\
& \vec{y}_{2}=\vec{y} \cdot \vec{y}=\vec{y}-p r \hat{g}_{V} \vec{y}=\left[\begin{array}{c}
1 \\
2 \\
3 \\
0
\end{array}\right]-\left[\begin{array}{c}
13 / 9 \\
20 / 9 \\
2 / 9 \\
0
\end{array}\right]=\left[\begin{array}{c}
-4 / 9 \\
-2 / 9 \\
4 / 9 \\
0
\end{array}\right]
\end{aligned}
$$

(3). Find a basis for V^{\perp}

$$
\begin{aligned}
& V^{\perp}=\operatorname{ker}\left(\left[\begin{array}{cccc}
2 & -2 & 1 & 0 \\
1 & 2 & 2 & 0
\end{array}\right]\right) \\
& {\left[\begin{array}{cccc}
2 & -2 & 1 & 0 \\
1 & 2 & 2 & 0
\end{array}\right] \rightarrow \cdots\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & \frac{1}{2} & 0
\end{array}\right]\left\{\begin{array}{l}
x_{1}+x_{3}=0 \\
x_{2}+\frac{1}{2} x_{3}=0
\end{array}\right.} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-x_{3} \\
-\frac{1}{2} x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], s_{0}\left[\begin{array}{c}
-1 \\
-y_{2} \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \text { is a } b_{\text {csin } f r} .}
\end{aligned}
$$

