- Instructor: He Wang

Email: he.wang@northeastern.edu
$\S 3.4$ Coordinates (Homework: 1, 2, 6, 7, 19, 20, 28, 37-40, 47)
Theorem. [Unique Representation Theorem]
Let V be a subspace of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ be a basis for V. Then each vector \vec{v} in V can be written as a linear combination

$$
\vec{v}=c_{1} \cdot \vec{b}_{1}+\cdots+c_{p} \cdot \vec{b}_{p}
$$

for a unique set of scalars c_{1}, \ldots, c_{p}.

Definition. [Coordinates Relative to a Basis]

The coordinates of $\vec{v} \in V$ relative to \mathscr{B} are the unique weights c_{1}, \ldots, c_{p} for which

$$
\vec{v}=c_{1} \cdot \vec{b}_{1}+\cdots+c_{p} \cdot \vec{b}_{p}
$$

In this case, we write $[\vec{v}]_{\mathscr{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{p}\end{array}\right]$

Example 1 (The standard basis for \mathbb{R}^{n}).
The standard basis for \mathbb{R}^{n} is the set $E=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$. The associated E-coordinates are called the standard coordinates of a vector in \mathbb{R}^{n}, and

$$
[\vec{x}]_{E}=\vec{x}
$$

Example 2 (Coordinates Relative to a Basis). Consider a basis $\mathscr{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ for \mathbb{R}^{2} where $\vec{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{b}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Suppose $\vec{x} \in \mathbb{R}^{2}$ has the coordinate vector $[\vec{x}]_{\mathscr{B}}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. Find \vec{x}.

$$
\begin{aligned}
\vec{x} & =-3 \overrightarrow{b_{1}}+2 \overrightarrow{b_{2}}=-3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-5 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
\overrightarrow{b_{1}} & \overrightarrow{b_{2}}
\end{array}\right][\vec{x}]_{B}
\end{aligned}
$$

Example 3 (The Change of Coordinates Matrix). Let $\vec{x}=\left[\begin{array}{l}2 \\ 8\end{array}\right]$. Find the coordinate vector $[\vec{x}]_{\mathscr{B}}$ of \vec{x} relative to the basis \mathscr{B} for \mathbb{R}^{2} as in the above example.

$$
\begin{aligned}
& c_{1} \overrightarrow{b_{1}}+c_{2} \overrightarrow{b_{2}}=\vec{x} \\
& c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
8
\end{array}\right] \\
& {\left[\begin{array}{ll|l}
1 & -1 & 2 \\
1 & 2 & 8
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{cc|c}
1 & -1 & 2 \\
0 & 3 & 6
\end{array}\right] \xrightarrow{R_{2} / 3}\left[\begin{array}{cc|cc}
1 & -1 & 2 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{R_{1}+R_{2}}\left[\begin{array}{ll|l}
1 & 0 & 4 \\
0 & 1 & 2
\end{array}\right]} \\
& C_{1}=4 \\
& c_{2}=2
\end{aligned} \text { So }[\vec{x}]_{3}=\left[\begin{array}{l}
4 \\
2
\end{array}\right] .
$$

Theorem.

Let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for \mathbb{R}^{n} and let $\vec{x} \in \mathbb{R}^{n}$ be any vector. Let $P_{\mathscr{B}}$ be the $n \times n$ matrix whose columns are $\vec{b}_{1}, \cdots, \vec{b}_{n}$ written in the standard basis for \mathbb{R}^{n}

$$
P_{\mathscr{B}}=\left[\begin{array}{lll}
\vec{b}_{1} & \ldots & \vec{b}_{n}
\end{array}\right]
$$

Then the standard coordinates of $\vec{x} \in \mathbb{R}$ can be calculated from the \mathscr{B}-coordinates $[\vec{x}]_{\mathscr{B}}$ of \vec{x} as

$$
\vec{x}=P_{\mathscr{B}} \cdot[\vec{x}]_{\mathscr{B}} .
$$

Definition. [Change-of-coordinates Matrix]

The matrix $P_{\mathscr{B}}$ from the previous theorem is called the change-of-coordinates matrix from the basis \mathscr{B} to the standard basis $\mathscr{E}=\left\{e_{1}, \ldots, e_{n}\right\}$.

The change-of-coordinates matrix $P_{\mathscr{B}}$ is always invertible, and equation $\vec{x}=P_{\mathscr{B}} \cdot[\vec{x}]_{\mathscr{B}}$ can be used to find the \mathscr{B}-coordinates of \vec{x} in terms of the standard coordinates of \vec{x} as

$$
[\vec{x}]_{\mathscr{B}}=P_{\mathscr{B}}^{-1} \cdot \vec{x} .
$$

Example 4. Example3

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] \quad P^{-1}=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
-1 & 1
\end{array}\right] \\
& {[\vec{x}]_{B}=P^{-1} \vec{x}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
8
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
12 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]}
\end{aligned}
$$

Theorem. The matrix of a linear transformation
Let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Let T be a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n}. There is an $n \times n$ matrix C such that

$$
[T(\vec{x})]_{\mathscr{B}}=C[\vec{x}]_{\mathscr{B}}
$$

The matrix C can by calculated by

$$
C=\left[\left[T\left(\vec{b}_{1}\right)\right]_{\mathscr{B}}\left[T\left(\vec{b}_{2}\right)\right]_{\mathscr{B}} \cdots\left[T\left(\vec{b}_{n}\right)\right]_{\mathscr{B}}\right]
$$

The matrix C is called the matrix of T respect to basis \mathscr{B}, or \mathscr{B}-matrix.

Suppose $T(\vec{x})=A \vec{x}$. Denote $P=\left[\vec{b}_{1} \vec{b}_{2} \ldots \vec{b}_{n}\right]$

Theorem.

$$
A=P C P^{-1}
$$

So

$$
C=P^{-1} A P
$$

Proof.

$$
\begin{aligned}
{[A \vec{x}]_{B} } & =C \cdot[\vec{x}]_{B} \\
P^{-1} A \vec{x} & =C P^{-1} \vec{x} \\
P^{-1} A & =C P^{-1} \\
A & =P C P^{-1}
\end{aligned}
$$

If A and C satisfy $A=P C P^{-1}$, then A and C are called similar.
Example 5. Consider a basis $\mathscr{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ for \mathbb{R}^{2} where $\vec{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{b}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Suppose a transformation T is defined by matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. What is the matrix C of the transformation T respect to basis \mathscr{B} ?

$$
\begin{aligned}
& P=\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] \quad P^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right] \\
& C=P^{-1} A P=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] \\
&=\frac{1}{3}\left[\begin{array}{cc}
3 & 3 \\
0 & -3
\end{array}\right] \\
&=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Example 6. Let T be the projection transformation onto a line $L=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\} \mathbb{R}^{3}$.
Find a basis \mathscr{B} for \mathbb{R}^{3} such that the \mathscr{B}-matrix of the T is diagonal.

$$
\begin{aligned}
& \text { we need a basis } B=\left\{\begin{array}{lll}
\overrightarrow{b_{1}} & \overrightarrow{2} & \vec{b}
\end{array}\right\} \text { such the } \\
& C=\left[\left[T\left(\vec{b}_{1}\right)_{B}\right]_{B}\left[T\left(\vec{b}_{2}\right)_{B}\right]_{B}\left[\left(\overrightarrow{b_{3}}\right)\right]_{B}\right]=\left[\begin{array}{lll}
c_{1} & 0 & 0 \\
0 & c_{2} & 0 \\
0 & 0 & c_{1}
\end{array}\right] \\
& \text { So }\left[T\left(\overrightarrow{b_{1}}\right)\right] B=\left[\begin{array}{l}
c_{1} \\
0 \\
0
\end{array}\right] \\
& 4 \\
& \text { So } T\left(\vec{b}_{3}\right)=c_{1}\left(\vec{b}_{1}\right), \quad \text { Similery } T\left(t_{t}\right)=\left(\overrightarrow{t_{2}}\right) \\
& T(\vec{b})=(\vec{b}) \\
& \text { Choose } \overrightarrow{b_{1}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { So } T\left(\overrightarrow{b_{1}}\right)=\overrightarrow{b_{1}} \\
& \text { Choose } \overrightarrow{b_{2}}=\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \text {, So } T(\vec{a})=0 \overrightarrow{b_{2}} \\
& \text { Chose } \overrightarrow{b_{3}}=\left[\begin{array}{l}
3 \\
0 \\
-1
\end{array}\right] \text { s. } T\left(\overrightarrow{b_{3}}\right)=0 \overrightarrow{b_{3}} \\
& \vec{G} \vec{a} \overrightarrow{b_{3}} \text { independent } \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Definition. (Abstract) Vector space
A vector space is any nonempty set V of objects, called vectors, on which there are defined two closed operations,

- vector addition (sum), and
- multiplication by a scalar (scalar product),
subject to the rules below, called axioms of a vector space:

1. $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
2. $(\vec{u}+\vec{v})+\vec{w}=\vec{v}+(\vec{u}+\vec{w})$.
3. There is a zero vector $\overrightarrow{0} \in V$ such that $\vec{u}+\overrightarrow{0}=\vec{u}$.
4. For each $\vec{u} \in V$, there is a vector $-\vec{u} \in V$ such that $\vec{u}+(-\vec{u})=0$.
5. $c \cdot(\vec{u}+\vec{v})=c \cdot \vec{u}+c \cdot \vec{v}$.
6. $(c+d) \cdot \vec{u}=c \cdot \vec{u}+d \cdot \vec{v}$.
7. $c(d \cdot \vec{u})=(c d) \vec{u}$.
8. $1 \cdot \vec{u}=\vec{u}$.

These must hold for all $\vec{u}, \vec{v}, \vec{w} \in V$ and all $c, d \in \mathbb{R}$.

In this definition, we use real numbers as scalar. The vector space is called real vector space. The axioms of a vector space imply that for all $\vec{u} \in V, c \in \mathbb{R}$,

$$
0 \cdot \vec{u}=\overrightarrow{0}, \quad c \cdot \overrightarrow{0}=\overrightarrow{0}, \quad-\vec{u}=(-1) \vec{u}
$$

1. \mathbb{R}^{n} is a vector space.
2. The set of all transformations $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a vector space.
3. The set of all $m \times n$ matrices is a vector space.
4. The set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a vector space.

Any definitions or theorems in Chapter 3 defined by vectors are true for the abstract vector spaces.

Like, linear independence, subspace, linear combination, basis, dimension.

1. Let P be the set of all polynomials.

$$
\begin{array}{r}
P=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{1} x^{1}+\cdots\right\} \text { for all rel numbers } \\
\qquad a_{0} a_{1} a_{2} \ldots
\end{array}
$$

2. Let P_{n} be the set of all polynomials of degree $\leq n$.

$$
\begin{array}{r}
P=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right\} \quad \text { for all rel numbers } \\
\\
a_{0} a_{1} \cdots a_{n}
\end{array}
$$

3. Let H be the set of all polynomials of degree exactly 3 , with real coefficients.

$$
\begin{aligned}
& \text { No. } \\
& H=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \left\lvert\, \begin{array}{|c}
\left.a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\} \\
a_{3} \neq 0
\end{array}\right.\right.
\end{aligned}
$$

4. Let $H=\left\{a x^{4}+b \mid a, b \in \mathbb{R}\right\}$. Is H a subspace of P_{4} ?

Yes.

5. Let $H=\left\{x^{2}+a \mid a \in \mathbb{R}\right\}$. Is H a subspace of P ?

No.
6. The set $U_{n \times n}$ of all $n \times n$ upper triangular matrices with real entries.

Yes.

7. The set $L_{n \times n}$ of all $n \times n$ lower triangular matrices with real entries.

Yes.
8. The set $D_{n \times n}$ of all $n \times n$ diagonal matrices with real entries.

Yes.
9. The set $T_{m \times n}$ of all $n \times n$ triangular matrices with real entries.

No

Definition.

Let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for a vector space V. The map

$$
T: V \rightarrow \mathbb{R}^{n}, \text { given by } T(\vec{x})=[\vec{x}]_{\mathscr{B}}
$$

is called the coordinate mapping from V to \mathbb{R}^{n} with respect to \mathscr{B}.

The coordinate mapping allows us to view vectors \vec{x} in the abstract vector space V by means of coordinates of vectors in the concrete and familiar vector space \mathbb{R}^{n}.

Theorem.

For any choice of basis \mathscr{B} of the vector space V, the associated coordinate mapping $T(\vec{x})=[\vec{x}]_{\mathscr{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}

Example 7 (The Coordinate Mapping). Let V be the vector space of all polynomials of degree ≤ 2.

$$
\begin{aligned}
T: V & \longrightarrow \mathbb{R}^{3} \\
a_{0}+a_{1} x+a_{1} x^{2} & \rightarrow\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]
\end{aligned}
$$

