
Math 2331 §3 More on vector spaces He Wang

• Instructor: He Wang Email: he.wang@northeastern.edu

§3.4 Coordinates (Homework: 1, 2, 6, 7, 19, 20, 28, 37–40, 47)

Theorem. [Unique Representation Theorem]

Let V be a subspace of Rn and let B = {~b1, . . . ,~bp} be a basis for V . Then each
vector ~v in V can be written as a linear combination

~v = c1 ·~b1 + · · ·+ cp ·~bp,

for a unique set of scalars c1, . . . , cp.

Definition. [Coordinates Relative to a Basis]

The coordinates of ~v ∈ V relative to B are the unique weights c1, . . . , cp for which

~v = c1 ·~b1 + · · ·+ cp ·~bp,

In this case, we write [~v]B =

c1...
cp



[~v]B =

[
3
2

]
Example 1 (The standard basis for Rn).

The standard basis for Rn is the set E = {~e1, . . . , ~en}. The associated E-coordinates are
called the standard coordinates of a vector in Rn, and

[~x]E = ~x
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Example 2 (Coordinates Relative to a Basis). Consider a basis B = {~b1,~b2} for R2 where

~b1 =

[
1
1

]
and ~b2 =

[
−1
2

]
. Suppose ~x ∈ R2 has the coordinate vector [~x]B =

[
−3
2

]
. Find ~x.

Example 3 (The Change of Coordinates Matrix). Let ~x =

[
2
8

]
. Find the coordinate vector

[~x]B of ~x relative to the basis B for R2 as in the above example.

Theorem.

Let B = {~b1, . . . ,~bn} be a basis for Rn and let ~x ∈ Rn be any vector. Let PB be the

n× n matrix whose columns are ~b1, · · · ,~bn written in the standard basis for Rn

PB =
[
~b1 . . . ~bn

]
Then the standard coordinates of ~x ∈ R can be calculated from the B-coordinates
[~x]B of ~x as

~x = PB · [~x]B.
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Definition. [Change-of-coordinates Matrix]

The matrix PB from the previous theorem is called the change-of-coordinates ma-
trix from the basis B to the standard basis E = {e1, . . . , en}.

The change-of-coordinates matrix PB is always invertible, and equation ~x = PB · [~x]B
can be used to find the B-coordinates of ~x in terms of the standard coordinates of ~x
as

[~x]B = P−1
B · ~x.

Example 4. Example3

Theorem. The matrix of a linear transformation

Let B = {~b1, . . . ,~bn} be a basis for Rn. Let T be a linear transformation from Rn to
Rn. There is an n× n matrix C such that

[T (~x)]B = C[~x]B

The matrix C can by calculated by

C =
[
[T (~b1)]B [T (~b2)]B · · · [T (~bn)]B

]
The matrix C is called the matrix of T respect to basis B, or B-matrix.

Suppose T (~x) = A~x. Denote P = [~b1 ~b2 . . .~bn]

Theorem.

A = PCP−1
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So
C = P−1AP

Proof.

If A and C satisfy A = PCP−1, then A and C are called similar.

Example 5. Consider a basis B = {~b1,~b2} for R2 where ~b1 =

[
1
1

]
and ~b2 =

[
−1
2

]
. Sup-

pose a transformation T is defined by matrix A =

[
0 1
1 0

]
. What is the matrix C of the

transformation T respect to basis B?

Example 6. Let T be the projection transformation onto a line L = Span{

1
2
3

} R3.

Find a basis B for R3 such that the B-matrix of the T is diagonal.
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Definition. (Abstract) Vector space

A vector space is any nonempty set V of objects, called vectors, on which there are
defined two closed operations,
• vector addition (sum), and
• multiplication by a scalar (scalar product),
subject to the rules below, called axioms of a vector space:
1. ~u + ~v = ~v + ~u.
2. (~u + ~v) + ~w = ~v + (~u + ~w).
3. There is a zero vector ~0 ∈ V such that ~u +~0 = ~u.
4. For each ~u ∈ V , there is a vector −~u ∈ V such that ~u + (−~u) = 0.
5. c · (~u + ~v) = c · ~u + c · ~v.
6. (c + d) · ~u = c · ~u + d · ~v.
7. c(d · ~u) = (cd)~u.
8. 1 · ~u = ~u.
These must hold for all ~u,~v, ~w ∈ V and all c, d ∈ R.

In this definition, we use real numbers as scalar. The vector space is called real vector space.
The axioms of a vector space imply that for all ~u ∈ V , c ∈ R,

0 · ~u = ~0, c ·~0 = ~0, −~u = (−1)~u.

1. Rn is a vector space.
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2. The set of all transformations Rm → Rn is a vector space.

2. The set of all m× n matrices is a vector space.

3. The set of all functions f : R→ R is a vector space.

Any definitions or theorems in Chapter 3 defined by vectors are true for the abstract vector
spaces.

Like, linear independence, subspace, linear combination, basis, dimension.

1. Let P be the set of all polynomials.

2. Let Pn be the set of all polynomials of degree ≤ n.

3. Let H be the set of all polynomials of degree exactly 3, with real coefficients.

No.

4. Let H = {ax4 + b | a, b ∈ R}. Is H a subspace of P4?

Yes.

5. Let H = {x2 + a | a ∈ R}. Is H a subspace of P?

No.

6. The set Un×n of all n× n upper triangular matrices with real entries.
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Yes.

7. The set Ln×n of all n× n lower triangular matrices with real entries.

Yes.

8. The set Dn×n of all n× n diagonal matrices with real entries.

Yes.

9. The set Tm×n of all n× n triangular matrices with real entries.

No

Definition.

Let B = {~b1, . . . ,~bn} be a basis for a vector space V . The map

T : V → Rn, given by T (~x) = [~x]B

is called the coordinate mapping from V to Rn with respect to B.

The coordinate mapping allows us to view vectors ~x in the abstract vector space V by means
of coordinates of vectors in the concrete and familiar vector space Rn.

Theorem.

For any choice of basis B of the vector space V , the associated coordinate mapping
T (~x) = [~x]B is a one-to-one linear transformation from V onto Rn

Example 7 (The Coordinate Mapping). Let V be the vector space of all polynomials of
degree ≤ 2.
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