- Instructor: He Wang Email: he.wang@northeastern.edu

§3.3 The Dimension of a Subspace of \mathbb{R}^{n}

For a subspace V of \mathbb{R}^{n}, it has many different bases. However, they contain some common properties.

From $\S 3.2$, we know that: If the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent in V, and the set $\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\}$ spans V, then $m \geq p$.

Theorem.

If $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ and $\mathscr{D}=\left\{\vec{d}_{1}, \ldots, \vec{d}_{m}\right\}$ are two bases for V, then $p=m$.

Definition. [The Dimension of a Vector Space]

The dimension of a vector space V is defined as

$$
\operatorname{dim} V=\text { The cardinality of any basis for } V
$$

i.e., the number of elements in a basis.

By convention, the dimension of the zero vector space $V=\{\overrightarrow{0}\}$ is 0 .
Example 1. The dimension of \mathbb{R}^{n} is n, since \mathbb{R}^{n} has a standard basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$.

Theorem. [The Basis Theorem]

Let V be a vector space with $\operatorname{dim}(V)=p \geq 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.
- Any set of p elements in V that span V, is automatically a basis for V.

Example 2. Is $\left\{\left[\begin{array}{c}\sqrt{3} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 3 \\ 5\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?
Yes. Since $\operatorname{dim} \mathbb{R}^{3}=3$ and those 3 vectors are independent, so by Basis Theorem, they form a basis for \mathbb{R}^{3}.

Example 3. Is $\left\{\left[\begin{array}{c}\sqrt{3} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

No. There are more vectors than dimension.
Example 4. Is $\left\{\left[\begin{array}{c}\sqrt{3} \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 3 \\ 5 \\ 1\end{array}\right]\right\}$ a basis for \mathbb{R}^{4} ?
No. There are fewer vectors than dimension.
Example 5. Is $\left\{\left[\begin{array}{c}1 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 5\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 6\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

No. $\operatorname{rank}(A)=2$, the set is dependent.

Theorem. [The Dimensions of $\operatorname{ker}(A)$ and $\operatorname{im}(A)$]

Let A be an $n \times p$ matrix.

- The dimension of $\operatorname{ker}(A)$ is the number of free variables in the equation $A \vec{x}=\overrightarrow{0}$.
- The dimension of $\operatorname{im}(A)$ is the number of pivot columns in A.
- $\operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)$.
- We always have the following

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=p .
$$

Example 6. (Example 6 in $\S 3.2$) Find bases for the kernel and image of the transformation defined by $A=\left[\begin{array}{ccccc}0 & 0 & 2 & -8 & -1 \\ 1 & 6 & 2 & -5 & -2 \\ 2 & 12 & 2 & -2 & -3 \\ 1 & 6 & 0 & 3 & -2\end{array}\right]$.
$\operatorname{Im}(A)$ hos a best $\left\{\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right]\left[\begin{array}{l}-1 \\ - \\ -3 \\ -2\end{array}\right]\right\} \quad$ net $A=\left[\begin{array}{ccccc}0 & 6 & 0 & 3 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{kar}(A)$ les basis) $\left\{\left[\begin{array}{c}-6 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 4 \\ 1 \\ 0\end{array}\right]\right\}$
So $\operatorname{dim}(\operatorname{Im}(A))=3 \quad \operatorname{dim}(\operatorname{tar} A)=2$

Proposition.

Let A be an $n \times n$ square matrix.
A is invertible,
if and only if the columns vectors span \mathbb{R}^{n};
if and only if the columns vectors of A are independent;
if and only if the columns vectors of A form a basis for \mathbb{R}^{n}.

Example 7. Can you find a 3×3 matrix A such that $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))$?
No. $\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(\operatorname{im}(A))=3$, so $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))=1.5$. This is impossible.

Example 8. Can you find a 4×4 matrix A such that $\operatorname{dim}(\operatorname{ker} A)=\operatorname{dim}(\operatorname{im}(A))$?
Yes. For example $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Question: Can you find a 4×4 matrix A such that $\operatorname{ker} A=\operatorname{im}(A)$?
Example 9. If an 4×4 matrix $A=B C$ such that B is a 4×3 matrix and C is a 3×4 matrix. Is A invertible?

HW.39. No. Since $\operatorname{rank}(A)=\operatorname{rank}(B C) \leq \operatorname{rank} B \leq 3$. So, A is not invertible.
Or, we can think about the transformation of $A=B C$ is $\mathbb{R}^{4} \xrightarrow{C} \mathbb{R}^{3} \xrightarrow{B} \mathbb{R}^{4}$. The image is not \mathbb{R}^{4}, so A is not invertible.

Example 10. A subspace V of \mathbb{R}^{n} is called a hyperplane if V is defined by

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0
$$

where at least one c_{i} is not zero. What is the dimension of V ?

$$
A=\left[\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right] \text { has rank } A=1
$$

So $V=\operatorname{ker} A$ has dimension $n-1$.
Example 11. Let T be the transformation defined by $A=\left[\begin{array}{cccc}-3 & 6 & -1 & 1 \\ 1 & -2 & 2 & 3 \\ 2 & -4 & 5 & 8\end{array}\right]$.
Suppose we already know $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & -2 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Q1. Find bases for the kernel and image of T.

$$
\begin{aligned}
& x_{1}-2 x_{2}-x_{4}=0 \\
& x_{3}+x_{4}=0
\end{aligned} \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}+x_{4} \\
x_{2} \\
-x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

A basis for $\operatorname{ker}(A)$ is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$
A basis fo in (A) is $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]\right\}$

Q2. What are the dimensions of for the kernel and image of A ?

$$
\operatorname{dim}(\operatorname{ker} A)=2 ; \operatorname{dim}(\operatorname{im} A)=2 ;
$$

Q3. Is $\vec{u}=\left[\begin{array}{c}3 \\ 1 \\ -2 \\ 1\end{array}\right]$ in the kernel $\operatorname{ker}(A)$?

$$
\text { Compute } A \vec{u}=\left[\begin{array}{cccc}
-3 & 6 & -1 & 1 \\
1 & -2 & 2 & 3 \\
2 & -4 & 5 & 8
\end{array}\right]\left[\begin{array}{c}
3 \\
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { Yes }
$$

Q4. Is $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ in the column of A ?

$$
\begin{aligned}
& {[A \cdot \vec{v}]=\left[\begin{array}{cccc|c}
-3 & 6 & -1 & 1 & 1 \\
1 & -2 & 2 & 3 & 2 \\
2 & -4 & 5 & 8 & 1
\end{array}\right] \xrightarrow{R_{1} \in R_{2}}\left[\begin{array}{cccc|c}
1 & -2 & 2 & 3 & 2 \\
3 & 6 & -1 & 1 & 1 \\
2 & -4 & 5 & 8 & 1
\end{array}\right] \frac{R_{2}+3 R_{1}}{R_{3}-2 R_{1}}\left[\begin{array}{ccccc}
1 & -2 & 2 & 3 & 2 \\
0 & 0 & 5 & 10 & 7 \\
0 & 0 & 1 & 2 & -3
\end{array}\right]} \\
& \xrightarrow{R_{2}-5 R_{3}}\left[\begin{array}{ccccc}
1 & -2 & 2 & 3 & 2 \\
0 & 0 & 0 & 0 & 22 \\
0 & 0 & 1 & 2 & -3
\end{array}\right] \text { NO solution. }
\end{aligned}
$$

Is $\vec{w}=\left[\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right]$ in the column of A ?

Yes.

