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• Instructor: He Wang Email: he.wang@northeastern.edu

§3.2 Bases and Linear Independence

1. Linear Independent sets

Let ~u1, ~u2, . . . , ~ut be vectors in Rn. Then Span(~u1, ~u2, . . . , ~ut) is a subspace of Rn.

The other direction is also correct:

Any subspace V of Rn can be written as span of some vectors in V .

We can always write V = Span(V ). However, we want to write V as span of the smallest
finite set.

For example, we can write image and kernel of a linear transformation as span of some
vectors.

Example 1. (From §3.1) A =

0 0 2 8
1 5 2 −5
2 10 6 −2

 = [~a1 ~a2 ~a3 ~a4]

The image of A is im(A) = Span(

0
1
2

 ,
 0

5
10

 ,
2

2
6

 ,
 8
−5
−2

) ⊂ R3.

The kernel is ker(A) = Span(


−5
1
0
0

 ,


13
0
−4
1

) ⊂ R4.

In the image im(A), we can see that ~a2 = 5~a1. So, one of them is redundant.

im(A) = Span(

0
1
2

 ,
2

2
6

 ,
 8
−5
−2

). Can we make it better?
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Definition.

• The set of vectors ~v1, . . . , ~vp in Rn is said to be (linearly) independent if the
homogeneous vector equation

x1~v1 + x2~v2 + · · ·+ xp~vp = ~0

only has the trivial solution x1 = x2 = · · · = xp = 0.

• If there exists a nontrivial solution (a1, a2, . . . , ap), then ~v1, . . . , ~vp is said to be
(linearly) dependent. In this case,

a1~v1 + a2~v2 + · · ·+ ap~vp = ~0

is a nontrivial relation among the vectors ~v1, . . . , ~vp.

The vector equation x1~v1 + x2~v2 + · · ·+ xp~vp = ~0 is equivalent to using the matrix equation
A~x = ~0 or the augmented matrix [A | ~0].

The set {~v1, ~v2, . . . , ~vp} is independent
if and only if the homogeneous equation only has zero solution;
if and only if there is no free variable;
if and only if all columns contain pivots;
if and only if rank(A) = p;

if and only if ker(A) = {~0}.

From definition of dependence, we can obtain the following two properties for one or two
vectors.

1. A set {~v} is linearly dependent if and only if ~v = ~0.

2. A set {~u,~v} is linearly dependent if and only if one of the two vectors is a scalar
multiple of the other vector.

We say a vector ~vi is redundant if it is a linear combination of the preceding vectors
{~v1, ~v2, . . . , ~vi−1}

The set {~v1, ~v2, . . . , ~vp} is independent if and only if none of them is redundant.

The set {~v1, ~v2, . . . , ~vp} is dependent if and only if at least one of them is redundant.
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Proposition.

• If the set {~v1, . . . , ~vp} of vectors contains the zero vector ~0, then it is linearly depen-
dent.
• If a subset of the set {~v1, . . . , ~vp} is linearly dependent, then {~v1, . . . , ~vp} is dependent.

Proposition.

If p > n, then a set {~v1, . . . , ~vp} of vectors in Rn is linearly dependent.

Reason: If p > n, then, rank of A = [~v1 . . . ~vp] can not equal to p.

Warning: The preceding property does not say that p ≤ n implies that {~v1, . . . , ~vp} is
linearly independent.

Example 2. (Checking Linear (in)dependence of Vectors)

(1.)


√3

0
0

 ,
 2

1.1
0

 ,
π3

5

 (2.)


0

0
0

 ,
 2

1.1
0

 ,
π3

5


(3.)


√3

1
6

 ,
 2

1.1
5

 ,
2

3
9

 ,
π6

8



(4.)




1
2
3
4

 ,


2
4
6
8


 (5.)




5
11
23
3.9

 ,


1
2
3
4

 ,


2
4
6
8

 ,

π
3
5

1.1




(6.)


1

2
0

 (7.)




3
2
3
4

 ,


2
1
6
8




Dependent sets: (2), (3), (4), (5)
Independent sets: (1), (6), (7)

Example 3. (Linear (In)Dependence of Vectors)

~v1 =

 1
−3
4

 , ~v2 =

 2
−2
5

 , ~v3 =

 3
−1
6

 .
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To determine whether or not the set {~v1, ~v2, ~v3} is linear dependent, we need to solve
the vector equation:

x1~v1 + x2~v2 + x3~v3 = ~0

Equivalently, we need to solve the homogeneous equation A~x = 0 for

A =

 1 2 3
−3 −2 −1
4 5 6

 .
We find the reduced row echelon form of A:1 0 −1

0 1 2
0 0 0

 leading to

{
x1 − x3 = 0
x2 + 2x3 = 0

.

This shows that x3 is a free variable, and A~x = 0 has nontrivial solutions, for example
(1,−2, 1). Hence, the set {~v1, ~v2, ~v3} is linear dependent. A linear dependence relation
is ~v1 − 2~v2 + ~v3 = 0.
Accordingly, the columns of A are not linearly independent.

2. Basis of a subspace

Definition.

Let V be subspace of Rn. A subset B = {~b1, . . . ,~bp} of V is called a basis for V if

(i) B is linearly independent, and

(ii) Span{~b1, . . . ,~bp} = V .

Example 4. Standard bases for Rn

A subset B of a vector space V has a “greater chance” of being
• linearly independent, if it has fewer vectors;
• a spanning set of V , if it has more vectors.
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More precisely, we have

Theorem.

If the set {~v1, ~v2, . . . , ~vp} is independent in V , and the set {~w1, ~w2, . . . , ~wm} spans V ,
then m ≥ p.

Example 5. Find a basis for the subspace im(A) and ker(A) in Example 1.

Let A be an n× p matrix. The following theorems give us a method for finding bases for the
subspaces im(A) and ker(A).

Theorem. [Basis for ker(A)]

Solve the matrix equation A~x = ~0. Write ~x as a linear combination of vectors ~v1, . . . , ~vp
with the weights corresponding to the free variables.
Then {~v1, . . . , ~vp} is a basis for ker(A).
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Theorem. [Basis for im(A)]

A basis for the image im(A) is given by the pivot columns of A.

Example 6. Find bases for the kernel and image of the transformation defined by A =
0 0 2 −8 −1
1 6 2 −5 −2
2 12 2 −2 −3
1 6 0 3 −2

.

From §1.2, we already know rref(A) =


1 6 0 3 0
0 0 1 −4 0
0 0 0 0 1
0 0 0 0 0



A vector~b ∈ Rn belongs to the column space of A if and only if there exist numbers x1, . . . , xp
such that

x1~a1 + · · ·+ xp~ap = ~b.

This in turn happens if and only if the matrix equation A~x = ~b has at least one solution ~x.

This last point shows that im(A) = Rp if and only if the matrix equation A~x = ~b has a

solution ~x for every choice of ~b ∈ Rn.

3. Coordinates
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Theorem. [Unique Representation Theorem]

Let V be a subspace of Rn and let B = {~b1, . . . ,~bp} be a basis for V . Then each
vector ~v in V can be written as a linear combination

~v = c1 ·~b1 + · · ·+ cp ·~bp,

for a unique set of scalars c1, . . . , cp.

Said differently, if

~v = c1 ·~b1 + · · ·+ cp ·~bp, and ~v = d1 ·~b1 + · · ·+ dp ·~bp

then c1 = d1, c2 = d2, . . . , cp = dp.

Definition. [Coordinates Relative to a Basis]

Let V be a subspace of Rn and let B = {~b1, . . . ,~bp} be a basis for V . The coordinates
of ~v ∈ V relative to B are the unique weights c1, . . . , cp for which

~v = c1 ·~b1 + · · ·+ cp ·~bp,

In this case, we write

[~v]B =

c1...
cp



More details about coordinates in §3.4.
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