• Instructor: He Wang Email: he.wang@northeastern.edu

§3.2 Bases and Linear Independence

1. Linear Independent sets

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t$ be vectors in \mathbb{R}^n . Then $\text{Span}(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t)$ is a subspace of \mathbb{R}^n .

The other direction is also correct:

Any subspace V of \mathbb{R}^n can be written as span of some vectors in V.

We can always write V = Span(V). However, we want to write V as span of the smallest finite set.

For example, we can write image and kernel of a linear transformation as span of some vectors.

Example 1. (From §3.1)
$$A = \begin{bmatrix} 0 & 0 & 2 & 8 \\ 1 & 5 & 2 & -5 \\ 2 & 10 & 6 & -2 \end{bmatrix} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{a}_4 \end{bmatrix}$$

The **image** of A is $\operatorname{im}(A) = \operatorname{Span}(\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 10 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 8 \\ -5 \\ -2 \end{bmatrix}) \subset \mathbb{R}^3.$
The **kernel** is $\ker(A) = \operatorname{Span}(\begin{bmatrix} -5 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 13 \\ 0 \\ -4 \\ 1 \end{bmatrix}) \subset \mathbb{R}^4.$

In the image im(A), we can see that $\vec{a}_2 = 5\vec{a}_1$. So, one of them is **redundant**.

$$\operatorname{im}(A) = \operatorname{Span}\begin{pmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\6 \end{bmatrix}, \begin{bmatrix} 8\\-5\\-2 \end{bmatrix}$$
). Can we make it better?

Definition.

• The set of vectors $\vec{v}_1, \ldots, \vec{v}_p$ in \mathbb{R}^n is said to be (linearly) independent if the homogeneous vector equation

$$x_1 \vec{v_1} + x_2 \vec{v_2} + \dots + x_p \vec{v_p} = \vec{0}$$

only has the trivial solution $x_1 = x_2 = \cdots = x_p = 0$.

• If there exists a nontrivial solution (a_1, a_2, \ldots, a_p) , then $\vec{v}_1, \ldots, \vec{v}_p$ is said to be (linearly) dependent. In this case,

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_p \vec{v}_p = \vec{0}$$

is a **nontrivial relation** among the vectors $\vec{v}_1, \ldots, \vec{v}_p$.

The vector equation $x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_p\vec{v}_p = \vec{0}$ is equivalent to using the matrix equation $A\vec{x} = \vec{0}$ or the augmented matrix $[A \mid \vec{0}]$.

The set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is independent if and only if the homogeneous equation only has zero solution; if and only if there is no free variable; if and only if all columns contain pivots; if and only if $\overline{\operatorname{rank}(A) = p}$; if and only if $\overline{\operatorname{ker}(A) = \{\vec{0}\}}$.

From definition of dependence, we can obtain the following two properties for one or two vectors.

1. A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v} = \vec{0}$.

2. A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if one of the two vectors is a scalar multiple of the other vector.

We say a vector $\vec{v_i}$ is **redundant** if it is a linear combination of the preceding vectors $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_{i-1}}\}$

The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is independent if and only if none of them is redundant.

The set $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is dependent if and only if at least one of them is redundant.

Proposition.

- If the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors contains the zero vector $\vec{0}$, then it is linearly dependent.
- If a subset of the set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly dependent, then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is dependent.

Proposition.

If p > n, then a set $\{\vec{v}_1, \ldots, \vec{v}_p\}$ of vectors in \mathbb{R}^n is linearly dependent.

Reason: If p > n, then, rank of $A = [\vec{v}_1 \dots \vec{v}_p]$ can not equal to p.

Warning: The preceding property does **not** say that $p \leq n$ implies that $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is linearly independent.

Example 2. (Checking Linear (in)dependence of Vectors)

$$(1.) \left\{ \begin{bmatrix} \sqrt{3} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1.1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 3 \\ 5 \end{bmatrix} \right\}$$

$$(2.) \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1.1 \\ 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 3 \\ 5 \end{bmatrix} \right\}$$

$$(4.) \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1.1 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 9 \end{bmatrix}, \begin{bmatrix} \pi \\ 6 \\ 8 \end{bmatrix} \right\}$$

$$(5.) \left\{ \begin{bmatrix} 5 \\ 11 \\ 23 \\ 3.9 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}, \begin{bmatrix} \pi \\ 3 \\ 5 \\ 1.1 \end{bmatrix} \right\}$$

$$(6.) \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right\} (7.) \left\{ \begin{bmatrix} 3 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 6 \\ 8 \end{bmatrix} \right\}$$

Dependent sets: (2), (3), (4), (5)Independent sets: (1), (6), (7)

Example 3. (Linear (In)Dependence of Vectors)

$$\vec{v}_1 = \begin{bmatrix} 1\\-3\\4 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 2\\-2\\5 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 3\\-1\\6 \end{bmatrix}.$$

To determine whether or not the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linear dependent, we need to solve the vector equation:

$$x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3 = \vec{0}$$

Equivalently, we need to solve the homogeneous equation $A\vec{x} = 0$ for

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & -2 & -1 \\ 4 & 5 & 6 \end{bmatrix}.$$

We find the reduced row echelon form of A:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \text{ leading to } \begin{cases} x_1 - x_3 &= 0 \\ x_2 + 2x_3 &= 0 \end{cases}$$

This shows that x_3 is a free variable, and $A\vec{x} = 0$ has nontrivial solutions, for example (1, -2, 1). Hence, the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linear dependent. A linear dependence relation is $\vec{v}_1 - 2\vec{v}_2 + \vec{v}_3 = 0$.

Accordingly, the columns of A are *not* linearly independent.

2. Basis of a subspace

Definition.

Let V be subspace of \mathbb{R}^n . A subset $B = \{\vec{b}_1, \ldots, \vec{b}_p\}$ of V is called a **basis** for V if

- (i) B is linearly independent, and
- (ii) $\operatorname{Span}\{\vec{b}_1,\ldots,\vec{b}_p\}=V.$

Example 4. Standard bases for \mathbb{R}^n

$$\mathbb{R}^{2} \text{ hos a standard bash} \quad \left\{ \overline{e}_{i}^{2} = \begin{bmatrix} i \\ 0 \end{bmatrix}, \ \overline{e}_{i}^{2} = \begin{bmatrix} i \\ 1 \end{bmatrix} \right\}$$
$$\mathbb{R}^{3} \text{ has a standard bash} \quad \left\{ \begin{bmatrix} i \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

A subset B of a vector space V has a "greater chance" of being

- linearly independent, if it has fewer vectors;
- a spanning set of V, if it has more vectors.

More precisely, we have

Theorem.

If the set $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is independent in V, and the set $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_m\}$ spans V, then $m \ge p$.

Example 5. Find a basis for the subspace im(A) and ker(A) in Example 1.

$$0 \quad \ker(A) = \operatorname{Span} \left\{ \begin{bmatrix} -5 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 13 \\ 0 \\ -4 \\ 1 \end{bmatrix} \right\} \quad These two vectors, que independent.$$

So they form a basis.
$$(2) \quad \operatorname{In}(A) = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix}, \begin{bmatrix} 8 \\ -5 \\ -2 \end{bmatrix} \right\} \quad T_3 = 4 \cdot U_2 - 13 \cdot U_1$$

$$S_0 \quad \left\{ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix} \right\} \quad \text{is a basis} \quad \text{for In}(A).$$

Let A be an $n \times p$ matrix. The following theorems give us a method for finding bases for the subspaces im(A) and ker(A).

Theorem. [Basis for ker(A)]

Solve the matrix equation $A\vec{x} = \vec{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_1, \ldots, \vec{v}_p$ with the weights corresponding to the free variables. Then $\{\vec{v}_1, \ldots, \vec{v}_p\}$ is a basis for ker(A). **Theorem**. [Basis for im(A)]

A basis for the image im(A) is given by the pivot columns of A.

Example 6. Find bases for the kernel and image of the transformation defined by $A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $\begin{vmatrix} 0 & 0 & 2 & -8 & -1 \\ 1 & 6 & 2 & -5 & -2 \\ 2 & 12 & 2 & -2 & -3 \\ 1 & 6 & 0 & 3 & -2 \end{vmatrix}.$

From §1.2, we already know $\mathbf{rref}(A) = \begin{bmatrix} 1 & 6 & 0 & 3 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

A vector $\vec{b} \in \mathbb{R}^n$ belongs to the column space of A if and only if there exist numbers x_1, \ldots, x_p such that

$$x_1\vec{a}_1 + \dots + x_p\vec{a}_p = \vec{b}.$$

This in turn happens if and only if the matrix equation $A\vec{x} = \vec{b}$ has at least one solution \vec{x} .

This last point shows that $im(A) = \mathbb{R}^p$ if and only if the matrix equation $A\vec{x} = \vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{R}^n$.

3. Coordinates

Theorem. [Unique Representation Theorem]

Let V be a subspace of \mathbb{R}^n and let $\mathscr{B} = {\vec{b}_1, \ldots, \vec{b}_p}$ be a basis for V. Then **each** vector \vec{v} in V can be written as a linear combination

$$\vec{v} = c_1 \cdot \vec{b}_1 + \dots + c_p \cdot \vec{b}_p,$$

for a **unique** set of scalars c_1, \ldots, c_p .

Said differently, if

$$\vec{v} = c_1 \cdot \vec{b}_1 + \dots + c_p \cdot \vec{b}_p$$
, and $\vec{v} = d_1 \cdot \vec{b}_1 + \dots + d_p \cdot \vec{b}_p$

then $c_1 = d_1, c_2 = d_2, \ldots, c_p = d_p$.

Definition. [Coordinates Relative to a Basis]

Let V be a subspace of \mathbb{R}^n and let $\mathscr{B} = \{\vec{b}_1, \ldots, \vec{b}_p\}$ be a basis for V. The **coordinates** of $\vec{v} \in V$ relative to \mathscr{B} are the unique weights c_1, \ldots, c_p for which

$$\vec{v} = c_1 \cdot \vec{b}_1 + \dots + c_p \cdot \vec{b}_p,$$

In this case, we write

$$[\vec{v}]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

More details about coordinates in $\S3.4$.