- Instructor: He Wang Email: he.wang@northeastern.edu

§3.2 Bases and Linear Independence

1. Linear Independent sets

Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{t}$ be vectors in \mathbb{R}^{n}. Then $\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{t}\right)$ is a subspace of \mathbb{R}^{n}.
The other direction is also correct:

Any subspace V of \mathbb{R}^{n} can be written as span of some vectors in V.

We can always write $V=\operatorname{Span}(V)$. However, we want to write V as span of the smallest finite set.

For example, we can write image and kernel of a linear transformation as span of some vectors.

Example 1. (From §3.1) $A=\left[\begin{array}{cccc}0 & 0 & 2 & 8 \\ 1 & 5 & 2 & -5 \\ 2 & 10 & 6 & -2\end{array}\right]=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \vec{a}_{4}\end{array}\right]$
The image of A is $\operatorname{im}(A)=\operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 5 \\ 10\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right],\left[\begin{array}{c}8 \\ -5 \\ -2\end{array}\right]\right) \subset \mathbb{R}^{3}$.
The kernel is $\operatorname{ker}(A)=\operatorname{Span}\left(\left[\begin{array}{c}-5 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}13 \\ 0 \\ -4 \\ 1\end{array}\right]\right) \subset \mathbb{R}^{4}$.
In the image $\operatorname{im}(A)$, we can see that $\vec{a}_{2}=5 \vec{a}_{1}$. So, one of them is redundant.
$\operatorname{im}(A)=\operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 6\end{array}\right],\left[\begin{array}{c}8 \\ -5 \\ -2\end{array}\right]\right)$. Can we make it better?

Definition.

- The set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} is said to be (linearly) independent if the homogeneous vector equation

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}
$$

only has the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$.

- If there exists a nontrivial solution $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$, then $\vec{v}_{1}, \ldots, \vec{v}_{p}$ is said to be (linearly) dependent. In this case,

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{p} \vec{v}_{p}=\overrightarrow{0}
$$

is a nontrivial relation among the vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$.

The vector equation $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}$ is equivalent to using the matrix equation $A \vec{x}=\overrightarrow{0}$ or the augmented matrix $[A \mid \overrightarrow{0}]$.

The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent
if and only if the homogeneous equation only has zero solution;
if and only if there is no free variable;
if and only if all columns contain pivots;
if and only if $\operatorname{rank}(A)=p$;
if and only if $\overrightarrow{\operatorname{ker}(A)=\{\overrightarrow{0}\}}$.

From definition of dependence, we can obtain the following two properties for one or two vectors.

1. A set $\{\vec{v}\}$ is linearly dependent if and only if $\vec{v}=\overrightarrow{0}$.
2. A set $\{\vec{u}, \vec{v}\}$ is linearly dependent if and only if one of the two vectors is a scalar multiple of the other vector.

We say a vector \vec{v}_{i} is redundant if it is a linear combination of the preceding vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{i-1}\right\}$

The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent if and only if none of them is redundant.

The set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is dependent if and only if at least one of them is redundant.

Proposition.

- If the set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors contains the zero vector $\overrightarrow{0}$, then it is linearly dependent.
- If a subset of the set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly dependent, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is dependent.

Proposition.

If $p>n$, then a set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of vectors in \mathbb{R}^{n} is linearly dependent.

Reason: If $p>n$, then, rank of $A=\left[\begin{array}{lll}\vec{v}_{1} & \ldots & \vec{v}_{p}\end{array}\right]$ can not equal to p.

Warning: The preceding property does not say that $p \leq n$ implies that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly independent.

Example 2. (Checking Linear (in)dependence of Vectors)
(1.) $\left\{\left[\begin{array}{c}\sqrt{3} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 3 \\ 5\end{array}\right]\right\}$
(2.) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 3 \\ 5\end{array}\right]\right\}$
(3.) $\left\{\left[\begin{array}{c}\sqrt{3} \\ 1 \\ 6\end{array}\right],\left[\begin{array}{c}2 \\ 1.1 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 9\end{array}\right],\left[\begin{array}{l}\pi \\ 6 \\ 8\end{array}\right]\right\}$
(4.) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 8\end{array}\right]\right\} \quad(5).\left\{\left[\begin{array}{c}5 \\ 11 \\ 23 \\ 3.9\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 8\end{array}\right],\left[\begin{array}{c}\pi \\ 3 \\ 5 \\ 1.1\end{array}\right]\right\}$
(6.) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}(7).\left\{\left[\begin{array}{l}3 \\ 2 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 6 \\ 8\end{array}\right]\right\}$

Dependent sets: (2), (3), (4), (5)
Independent sets: (1), (6), (7)

Example 3. (Linear (In)Dependence of Vectors)

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
4
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
5
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
3 \\
-1 \\
6
\end{array}\right] .
$$

To determine whether or not the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linear dependent, we need to solve the vector equation:

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\overrightarrow{0}
$$

Equivalently, we need to solve the homogeneous equation $A \vec{x}=0$ for

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & -2 & -1 \\
4 & 5 & 6
\end{array}\right]
$$

We find the reduced row echelon form of A :

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \text { leading to }\left\{\begin{array}{cc}
x_{1}-x_{3} & =0 \\
x_{2}+2 x_{3} & =0
\end{array}\right.
$$

This shows that x_{3} is a free variable, and $A \vec{x}=0$ has nontrivial solutions, for example $(1,-2,1)$. Hence, the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linear dependent. A linear dependence relation is $\vec{v}_{1}-2 \vec{v}_{2}+\vec{v}_{3}=0$.
Accordingly, the columns of A are not linearly independent.

2. Basis of a subspace

Definition.

Let V be subspace of \mathbb{R}^{n}. A subset $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ of V is called a basis for V if
(i) B is linearly independent, and
(ii) $\operatorname{Span}\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}=V$.

Example 4. Standard bases for \mathbb{R}^{n}

$$
\begin{aligned}
& \mathbb{R}^{2} \text { has a standard best }\left\{\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right. \\
& \mathbb{R}^{3} \text { has a standard bess) }\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

A subset B of a vector space V has a "greater chance" of being

- linearly independent, if it has fewer vectors;
- a spanning set of V, if it has more vectors.

More precisely, we have

Theorem.

If the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ is independent in V, and the set $\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\}$ spans V, then $m \geq p$.

$$
\begin{aligned}
& {\left[\vec{v}_{1} \overrightarrow{v_{2}} \cdots \vec{v}_{p}\right]=\left[\vec{w}_{1} \vec{w}_{2} \cdots \vec{w}_{m}\right] c \Leftarrow \vec{v}_{i}=c_{1} \vec{w}_{1}+c_{i} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}} \\
& V=W C \\
& \text { WC } \vec{x}=\overrightarrow{0} \text { only her yew solution } \\
& =\left(\begin{array}{llll}
\overrightarrow{w_{1}} & \overrightarrow{w_{2}} & \cdots & \overrightarrow{w_{n}}
\end{array}\right]\left[\begin{array}{c}
c_{i} \\
\vdots \\
G_{i}
\end{array}\right] \\
& \Rightarrow \vec{X}=\overrightarrow{0} \text { only hes zero solution } \\
& \Rightarrow \text { no ie vartble } \Rightarrow m \geqslant p
\end{aligned}
$$

Example 5. Find a basis for the subspace $\operatorname{im}(A)$ and $\operatorname{ker}(A)$ in Example 1.

$$
\begin{aligned}
& \text { (1) } \operatorname{ker}(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
13 \\
0 \\
-4 \\
1
\end{array}\right]\right\} \quad \begin{array}{l}
\text { These two vectors ane independent. } \\
\text { So they form a basil. }
\end{array} \\
& \text { (2) } \operatorname{Im}(A)=\operatorname{spen}\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\left[\begin{array}{c}
2 \\
2 \\
6
\end{array}\right]\left[\begin{array}{c}
8 \\
-5 \\
-2
\end{array}\right]\right\} \\
& \vec{U}_{3}=4 \vec{U}_{2}-13 \overrightarrow{u_{1}} \\
& S_{0}\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right] \text { is abesil for } \operatorname{Im}(A) .\right.
\end{aligned}
$$

Let A be an $n \times p$ matrix. The following theorems give us a method for finding bases for the subspaces $\operatorname{im}(A)$ and $\operatorname{ker}(A)$.

Theorem. [Basis for $\operatorname{ker}(A)$]

Solve the matrix equation $A \vec{x}=\overrightarrow{0}$. Write \vec{x} as a linear combination of vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ with the weights corresponding to the free variables.
Then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a basis for $\operatorname{ker}(A)$.

Theorem. [Basis for $\operatorname{im}(A)$]

A basis for the image $\operatorname{im}(A)$ is given by the pivot columns of A.

Example 6. Find bases for the kernel and image of the transformation defined by $A=$ $\left[\begin{array}{ccccc}0 & 0 & 2 & -8 & -1 \\ 1 & 6 & 2 & -5 & -2 \\ 2 & 12 & 2 & -2 & -3 \\ 1 & 6 & 0 & 3 & -2\end{array}\right]$.

From $\S 1.2$, we already know $\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 6 & 0 & 3 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \operatorname{Im}(A) \text { hes a basis }\left\{\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2 \\
-1 \\
-2
\end{array}\right]\right\} \\
& \begin{array}{l}
x_{1}+6 x_{2}+3 x_{4}=0 \\
x_{3}-4 x_{4}=0 \\
x_{5}=0
\end{array} \quad\left\{\begin{array}{l}
x_{1}=-6 x_{2}-3 x_{4} \\
x_{3}=4 x_{4} \\
x_{5}=0 \\
x_{2}, x_{4} \text { fee }
\end{array} \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-6 x_{2}-3 x_{4} \\
x_{2} \\
4 x_{4} \\
x_{4} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{c}
-6 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
0 \\
4 \\
1 \\
0
\end{array}\right]\right. \\
& \text { So } \operatorname{ker}(A) \text { has a basis }\left\{\left[\begin{array}{c}
-6 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
4 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

A vector $\vec{b} \in \mathbb{R}^{n}$ belongs to the column space of A if and only if there exist numbers x_{1}, \ldots, x_{p} such that

$$
x_{1} \vec{a}_{1}+\cdots+x_{p} \vec{a}_{p}=\vec{b}
$$

This in turn happens if and only if the matrix equation $A \vec{x}=\vec{b}$ has at least one solution \vec{x}.
This last point shows that $\operatorname{im}(A)=\mathbb{R}^{p}$ if and only if the matrix equation $A \vec{x}=\vec{b}$ has a solution \vec{x} for every choice of $\vec{b} \in \mathbb{R}^{n}$.

3. Coordinates

Theorem. [Unique Representation Theorem]

Let V be a subspace of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ be a basis for V. Then each vector \vec{v} in V can be written as a linear combination

$$
\vec{v}=c_{1} \cdot \vec{b}_{1}+\cdots+c_{p} \cdot \vec{b}_{p}
$$

for a unique set of scalars c_{1}, \ldots, c_{p}.

Said differently, if

$$
\vec{v}=c_{1} \cdot \vec{b}_{1}+\cdots+c_{p} \cdot \vec{b}_{p}, \text { and } \vec{v}=d_{1} \cdot \vec{b}_{1}+\cdots+d_{p} \cdot \vec{b}_{p}
$$

then $c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{p}=d_{p}$.

Definition. [Coordinates Relative to a Basis]

Let V be a subspace of \mathbb{R}^{n} and let $\mathscr{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$ be a basis for V. The coordinates of $\vec{v} \in V$ relative to \mathscr{B} are the unique weights c_{1}, \ldots, c_{p} for which

$$
\vec{v}=c_{1} \cdot \vec{b}_{1}+\cdots+c_{p} \cdot \vec{b}_{p},
$$

In this case, we write

$$
[\vec{v}]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{p}
\end{array}\right]
$$

More details about coordinates in §3.4.

