• Instructor: He Wang Email: he.wang@northeastern.edu

§3.1 Image and Kernel of a Linear Transformation

Let T be a (linear) transformation from \mathbb{R}^m to \mathbb{R}^n .

Definition. (Image and Kernel)

The **image** of T is defined as

$$\operatorname{im}(T) := \{T(\vec{x}) \mid \text{ all } \vec{x} \in \mathbb{R}^m\} \subset \mathbb{R}^n$$

The **kernel** of T is defined as

$$\ker(T) := \{ \vec{x} \in \mathbb{R}^m \mid T(\vec{x}) = \vec{0} \} \subset \mathbb{R}^n$$

Example 1. Let *L* be the line spanned by $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Find the image and kernel of *P* defined by the orthogonal projection onto *L*.

Example 2. (H.W.)Think about the reflection and rotation on \mathbb{R}^2

Denote R: Reflection. $im(R) = \mathbb{R}^2$ and $ker(R) = \{\vec{0}\}$ O: rotation. $im(O) = \mathbb{R}^2$ and $ker(O) = \{\vec{0}\}$

We know that any linear transformation from \mathbb{R}^m to \mathbb{R}^n is defined by a $n \times m$ matrix $A = [\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_m].$

The image of T is

$$im(T) = \{A(\vec{x}) \mid all \ \vec{x} \in \mathbb{R}^m\}$$

= $\{x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_m\vec{a}_m \mid all real numbers \ x_i\}$
= $\{all linear combinations of \ \vec{a}_1, \vec{a}_2, \dots, \vec{a}_m\}$
= $Span(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m)$

The kernel of T is the solution set

$$\ker(T) = \{ \vec{x} \in \mathbb{R}^n \mid A(\vec{x}) = \vec{0} \}$$
$$= \{ \text{all solutions of } A(\vec{x}) = \vec{0} \}$$

Example 3. Find a transformation which has kernel as a plane

$$2x - y + 3z = 0.$$

How many such transformation can we find?

Plane={all solutions of
$$2x - y + 3z = 0$$
} = { $vx \in \mathbb{R}^3 | A\vec{x} = \vec{0}$ } where $A = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$.
 $\begin{bmatrix} 2 & -1 & 3 \end{bmatrix}$ obtaines such a transformation. $\mathbb{R}^3 \to \mathbb{R}^1$
 $\begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 6 \end{bmatrix}$ defines such a transformation $\mathbb{R}^3 \to \mathbb{R}^2$

Example 4. What is the geometry of image and kernel of the transformation defined by $T(\vec{x}) = \vec{v} \cdot \vec{x}$ for $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$?

$$T(\vec{x}) = \vec{v} \cdot \vec{x}$$

$$= 2x_1 - x_2 + 3x_3 \qquad : \quad \mathbb{R}^3 \to \mathbb{R}^1$$

$$Matrix \quad \overrightarrow{of} \quad T \quad is \quad [2 - 1 \quad 3]$$

$$: \quad in(T) = \mathbb{R}^1$$

$$ker(T) = \{ \text{ all vectors } \vec{x} \mid [\vec{v} \cdot \vec{x}] = 0 \} = \{ \text{ all vectors at legous } [t_0, \vec{v}] \}$$

Example 5. Find the image and kernel of the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by matrix $A = \begin{bmatrix} 0 & 0 & 2 & 8 \\ 1 & 5 & 2 & -5 \\ 2 & 10 & 6 & -2 \end{bmatrix} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{a}_4 \end{bmatrix}$ The **image** of T is $im(T) = Span(\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4)$.

We know that the kernel of T is $\ker(T) = \{\text{all solutions of } A\vec{x} = 0\}.$

We calculated that $\operatorname{rref}(A) = \begin{bmatrix} 1 & 5 & 0 & -13 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

The solutions of $A(\vec{x}) = \vec{0}$ can be described as vector form:

$$\vec{x} = x_2 \begin{bmatrix} -5\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 13\\0\\-4\\1 \end{bmatrix} = x_2 \vec{v}_1 + x_4 \vec{v}_2$$

So the **kernel** is $ker(T) = Span(v_1, v_2)$.

Consider an $n \times m$ matrix. We know that ker(T) is the set of all solutions of $A(\vec{x}) = \vec{0}$. We can get the following results.

Theorem.

(1.) $\ker(A) = {\vec{0}}$ if and only if $A(\vec{x}) = \vec{0}$ only has zero solution.

(2.) $\ker(A) = \{\vec{0}\}$ if and only if $\operatorname{rank}(A) = m$.

(3.) If $\ker(A) = \{\vec{0}\}$, then $m \le n$.

Recall that A is invertible if and only if rank A = n. Then,

Theorem.

Let A be an $n \times n$ square matrix.

- (1.) A is invertible if and only if $\ker(A) = \{\vec{0}\}.$
- (2.) A is invertible if and only if if and only if $im(A) = \mathbb{R}^n$.

Definition. (Subspace)

A **subspace** of the vector space \mathbb{R}^n is a subset H of \mathbb{R}^n that satisfies the following three properties.

(1). $\vec{0} \in H$.

(2). If $\vec{u}, \vec{v} \in H$ then $\vec{u} + \vec{v} \in H$. (Closed under addition)

(3). If $\vec{u}, \vec{v} \in H$ and $c \in \mathbb{R}$, then $c\vec{u} \in H$. (Closed under scalar product)

- (1) $\{\vec{0}\}\$ is a subspace of \mathbb{R}^n , called **zero space**.
- (2) Any line or plane passing zero in \mathbb{R}^n is a subspace.

Theorem.

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t$ be vectors in \mathbb{R}^n . Then $\text{Span}(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t)$ is a subspace of \mathbb{R}^n .

Proof (for t=3)

$$S = Span(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}) = \{ x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + x_{3}\vec{u}_{3} \mid any x_{1}, x_{2}, x_{3} \in \mathbb{R} \}$$

$$0 \quad \vec{0} \in S$$

$$(2) \quad for any x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + x_{3}\vec{u}_{3} \text{ and } y_{1}\vec{u}_{1} + y_{2}\vec{u}_{2} + y_{3}\vec{u}_{3} \in S,$$
the sum is $(x_{1}+y_{1})\vec{u}_{1} + (x_{2}+y_{2})\vec{u}_{2} + (x_{3}+y_{3})\vec{u}_{3}$ is in $S.$
(dosed under sum)
3) For any $x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + x_{3}\vec{u}_{3} \in S$ and $C \in \mathbb{R}$, we have
 $C(x_{1}\vec{u}_{1} + x_{2}\vec{u}_{2} + x_{3}\vec{u}_{3}) = (CA_{1})\vec{u}_{1} + (Cx_{2})\vec{u}_{2} + (Cx_{3})\vec{u}_{3}$ is in S
(closed under scaler product)
So S is a subspace.

Theorem.

Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

1. $\operatorname{im}(T)$ is a subspace of \mathbb{R}^n .

2. ker(T) is a subspace of \mathbb{R}^m .

Example 6. Determine which of the following set is a subspace (vector space).

1. Let L be the set of vectors on the line $2x_1 - x_2 = 0$.

Yes.

2. Let L be the set of vectors on the line $2x_1 - x_2 = 1$.

No. $\vec{0} \notin L$.

3. Let *H* be the set of vectors on the plane $3x_1 - 5x_2 + x_3 = 0$.

Yes.

4. Let $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0 \right\}.$

5. The union of the first and second quadrants in the xy-plane: $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid y \ge 0 \right\}$

