- Instructor: He Wang
Email: he.wang@northeastern.edu

§3.1 Image and Kernel of a Linear Transformation

Let T be a (linear) transformation from \mathbb{R}^{m} to \mathbb{R}^{n}.

Definition. (Image and Kernel)

The image of T is defined as

$$
\operatorname{im}(T):=\left\{T(\vec{x}) \mid \text { all } \vec{x} \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}
$$

The kernel of T is defined as

$$
\operatorname{ker}(T):=\left\{\vec{x} \in \mathbb{R}^{m} \mid T(\vec{x})=\overrightarrow{0}\right\} \subset \mathbb{R}^{m}
$$

Example 1. Let L be the line spanned by $\vec{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Find the image and kernel of P defined by the orthogonal projection onto L.

$$
\begin{aligned}
& \text { More precisely, } \\
& P=\left[\begin{array}{cc}
\frac{4}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right] \\
& \operatorname{Im}(P)=\operatorname{span}\left\{\left[\begin{array}{l}
4 \\
\frac{2}{5}
\end{array}\right]\left[\begin{array}{l}
3^{2} \\
1 \\
3
\end{array}\right]\right\}=\operatorname{spen}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right. \\
& \operatorname{ker}(P)=\left\{\text { solutions of } 2 x_{1}+x_{2}=0\right\}
\end{aligned}
$$

Example 2. (H.W.)Think about the reflection and rotation on \mathbb{R}^{2}

Denote R: Reflection. $\operatorname{im}(R)=\mathbb{R}^{2}$ and $\operatorname{ker}(R)=\{\overrightarrow{0}\}$
O: rotation. $\operatorname{im}(O)=\mathbb{R}^{2}$ and $\operatorname{ker}(O)=\{\overrightarrow{0}\}$

We know that any linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n} is defined by a $n \times m$ matrix $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{m}\end{array}\right]$.

The image of T is

$$
\begin{aligned}
\operatorname{im}(T) & =\left\{A(\vec{x}) \mid \text { all } \vec{x} \in \mathbb{R}^{m}\right\} \\
& =\left\{x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{m} \vec{a}_{m} \mid \text { all real numbers } x_{i}\right\} \\
& =\left\{\text { all linear combinations of } \vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{m}\right\} \\
& =\operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{m}\right)
\end{aligned}
$$

The kernel of T is the solution set

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{\vec{x} \in \mathbb{R}^{n} \mid A(\vec{x})=\overrightarrow{0}\right\} \\
& =\{\text { all solutions of } A(\vec{x})=\overrightarrow{0}\}
\end{aligned}
$$

Example 3. Find a transformation which has kernel as a plane

$$
2 x-y+3 z=0 .
$$

How many such transformation can we find?
Plane $=\{$ all solutions of $2 x-y+3 z=0\}=\left\{v x \in \mathbb{R}^{3} \mid A \vec{x}=\overrightarrow{0}\right\}$ where $A=\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & -1 & 3
\end{array}\right] \text { defines such a transformation. } \mathbb{R}^{3} \rightarrow \mathbb{R}^{\prime}} \\
& {\left[\begin{array}{lll}
2 & -1 & 3 \\
4 & -2 & 6
\end{array}\right] \text { defines such a transformation } \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}}
\end{aligned}
$$

Example 4. What is the geometry of image and kernel of the transformation defined by $T(\vec{x})=\vec{v} \cdot \vec{x}$ for $\vec{v}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$?

$$
\begin{aligned}
T(\vec{x}) & =\vec{v} \cdot \vec{x} \\
& =2 x_{1}-x_{2}+3 x_{3} \quad: \mathbb{R}^{3} \rightarrow \mathbb{R}^{\prime}
\end{aligned}
$$

mothy of T is $\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]$

- $j m(T)=\mathbb{R}^{\prime}$

$$
\operatorname{ker}(T)=\{a \mid \text { vectors } \vec{x} \mid \vec{v} \cdot \vec{x}=0\}=\left\{\text { all vector athogon }\left|t_{0} \vec{v}\right|\right.
$$

Example 5. Find the image and kernel of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by matrix $A=\left[\begin{array}{cccc}0 & 0 & 2 & 8 \\ 1 & 5 & 2 & -5 \\ 2 & 10 & 6 & -2\end{array}\right]=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \vec{a}_{4}\end{array}\right]$

The image of T is $\operatorname{im}(T)=\operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}\right)$.
We know that the kernel of T is $\operatorname{ker}(T)=\{$ all solutions of $A \vec{x}=0\}$.
We calculated that $\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 5 & 0 & -13 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0\end{array}\right]$
The solutions of $A(\vec{x})=\overrightarrow{0}$ can be described as vector form:

$$
\vec{x}=x_{2}\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
13 \\
0 \\
-4 \\
1
\end{array}\right]=x_{2} \vec{v}_{1}+x_{4} \vec{v}_{2}
$$

So the kernel is $\operatorname{ker}(T)=\operatorname{Span}\left(v_{1}, v_{2}\right)$.

Consider an $n \times m$ matrix. We know that $\operatorname{ker}(T)$ is the set of all solutions of $A(\vec{x})=\overrightarrow{0}$. We can get the following results.

Theorem.

(1.) $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if $A(\vec{x})=\overrightarrow{0}$ only has zero solution.
(2.) $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if $\operatorname{rank}(A)=m$.
(3.) If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then $m \leq n$.

Recall that A is invertible if and only if $\operatorname{rank} A=n$. Then,

Theorem.

Let A be an $n \times n$ square matrix.
(1.) A is invertible if and only if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.
(2.) A is invertible if and only if if and only if $\operatorname{im}(A)=\mathbb{R}^{n}$.

Definition. (Subspace)

A subspace of the vector space \mathbb{R}^{n} is a subset H of \mathbb{R}^{n} that satisfies the following three properties.
(1). $\overrightarrow{0} \in H$.
(2). If $\vec{u}, \vec{v} \in H$ then $\vec{u}+\vec{v} \in H$. (Closed under addition)
(3). If $\vec{u}, \vec{v} \in H$ and $c \in \mathbb{R}$, then $c \vec{u} \in H$. (Closed under scalar product)
(1) $\{\overrightarrow{0}\}$ is a subspace of \mathbb{R}^{n}, called zero space.
(2) Any line or plane passing zero in \mathbb{R}^{n} is a subspace.

Theorem.

Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{t}$ be vectors in \mathbb{R}^{n}. Then $\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{t}\right)$ is a subspace of \mathbb{R}^{n}.

Proof (for $\mathrm{t}=3$)
$S=\operatorname{Span}\left(\vec{u}_{1}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}\right)=\left\{x_{1} \vec{u}_{1}+x_{2} \overrightarrow{u_{2}}+x_{3} \vec{u}_{3} \mid\right.$ any $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$
(1) $\overrightarrow{0} \in S$
(2) For any $x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}+x_{3} \vec{u}_{3}$ and $y_{1} \vec{u}_{1}+y_{2} \vec{u}_{2}+y_{3} \vec{u}_{3} \in S$,
the sum is $\left(x_{1}+y_{1}\right) \overrightarrow{u_{1}}+\left(x_{2}+y_{2}\right) \overrightarrow{u_{2}}+\left(x_{3}+y_{3}\right) \overrightarrow{u_{3}}$ is in S.
(closed under sum)
3) For any $x_{1} \overrightarrow{u_{1}}+x_{2} \overrightarrow{u_{2}}+x_{1} \overrightarrow{u_{3}} \leq S$ and $c \in \mathbb{R}$, we here
$c\left(x_{1} \overrightarrow{u_{1}}+x_{2} \overrightarrow{u_{2}}+x_{3} \overrightarrow{u_{3}}\right)=\left(c x_{1}\right) \overrightarrow{u_{1}}+\left(c x_{2}\right) \overrightarrow{u_{2}}+\left(c x_{3}\right) \vec{u}_{3}$ is in S
closed under scab product)
So S is a subspace.

Theorem.

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Then

1. $\operatorname{im}(T)$ is a subspace of \mathbb{R}^{n}.
2. $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{m}.

Example 6. Determine which of the following set is a subspace (vector space).

1. Let L be the set of vectors on the line $2 x_{1}-x_{2}=0$.

> Yes.
2. Let L be the set of vectors on the line $2 x_{1}-x_{2}=1$.

No. $\overrightarrow{0} \notin L$.
3. Let H be the set of vectors on the plane $3 x_{1}-5 x_{2}+x_{3}=0$.

Yes.
4. Let $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}: x_{1} \geq 0, x_{2} \geq 0\right\}$.

No. If $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $-\vec{u} \notin V$.

5. The union of the first and second quadrants in the $x y$-plane: $W=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, y \geq 0\right\}$

No. If $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $-\vec{u} \notin V$.

