- Instructor: He Wang Email: he.wang@northeastern.edu

§2.4 The Inverse of a Linear Transformation

The Inverse of a matrix

Definition.

An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

Remark: 1. Since the role of A and B in the definition is symmetric, if B is the inverse of A, then A is the inverse of B.
2. If A is invertible, then it has only one inverse. The inverse of A is denoted as A^{-1}.

Theorem. [Algorithm for Computing A^{-1}]

Given an $n \times n$ matrix A.

1. Define an $n \times 2 n$ "augmented matrix"

$$
\left[A \mid I_{n}\right]
$$

2. Using elementary row operations to find $\operatorname{rref}\left[A \mid I_{n}\right]$.
(i). If $\operatorname{rref}\left[A \mid I_{n}\right]=\left[I_{n} \mid C\right]$, then $C=A^{-1}$.
(ii). If this is not possible, then A is not invertible.

Example 1. Find the inverse of matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2\end{array}\right]$.

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 0 \\
3 & 8 & 2 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{3}-3 R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 5 & -1 & -3 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-5 R_{2}}\left[\begin{array}{ccc|cc}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 & -2 & 1 \\
0 & 0 & -1 & 0 \\
7 & -5 & 1
\end{array}\right]} \\
\xrightarrow{-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right] \xrightarrow{R_{1}-R_{3}}\left[\begin{array}{ccccccc}
1 & 1 & 0 & 8 & -5 & 1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & -6 & 1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right] \\
S_{0} A^{-1}=\left[\begin{array}{cccc}
10 & -6 & 1 \\
-2 & 1 & 0 \\
-7 & 5 & -1
\end{array}\right] \\
{\left[\begin{array}{lll}
I & A^{-1}
\end{array}\right]}
\end{gathered}
$$

Theorem. [Invertibility of 2×2 Matrices]

A 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if $a d-b c \neq 0$.
The formula for the inverse matrix of A is

$$
A^{-1}=\frac{1}{a d-b c} \cdot\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

We call $a d-b c$ the determinant of A, denoted by $\operatorname{det}(A)$ or $|A|$.
Geometric meaning of determinant: The absolute value of the determinant of a 2×2 matrix A is the area of the parallelogram spanned by the column vectors \vec{a}_{1} and \vec{a}_{2}.

Example 2.

$$
A=\left[\begin{array}{ll}
2 & 3 \\
5 & 8
\end{array}\right] \quad C=\left[\begin{array}{cc}
8 & -3 \\
-5 & 2
\end{array}\right]
$$

$A^{-1}=\frac{1}{16 \cdot 15}\left[\begin{array}{cc}8 & -3 \\ -5 & 2\end{array}\right]=\left[\begin{array}{cc}8 & -3 \\ -5 & 2\end{array}\right]$
$\operatorname{det}(A)=16-15=1 . \vec{a}_{1}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and $\vec{a}_{2}=\left[\begin{array}{l}3 \\ 8\end{array}\right]$
$|\operatorname{det}(A)|$ is the area of the parallelogram spanned by the column vectors \vec{a}_{1} and \vec{a}_{2}.

Example. The inverse of the elementary matrices.

$$
\begin{aligned}
& R_{3}+2 R_{2} \downarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=E_{3} \\
& E_{3}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 3. The inverse of the elementary matrices.

$$
E_{i j}^{-1}=E_{i j}, \quad E_{i}(c)^{-1}=E_{i}(1 / c), \quad E_{i j}(d)^{-1}=E_{i j}(-d)
$$

Theorem.

Let A and B be $n \times n$ matrices.

- If A is invertible, then so is A^{-1} and

$$
\left(A^{-1}\right)^{-1}=A
$$

- If A is invertible, then so is A^{T} and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

- If A and B are invertible, then so is $A B$ and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- If A is invertible and $k \neq 0$, then so is $k A$ and

$$
(k A)^{-1}=\frac{1}{k} A^{-1} .
$$

- Suppose A is invertible. If $A B=A C$, or $B A=C A$, then $B=C$.

Each one can be verified using definition. We use the product as an example, $(A B)\left(B^{-1} A^{-1}\right)=$ $A B B^{-1} A^{-1}=A I A^{-1}=A A^{-1}=I$ by associativity of products. Similarly, $\left(B^{-1} A^{-1}\right)(A B)=$ $B^{-1} A^{-1} A B=B I B^{-1}=B B^{-1}=I$. So $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Example 4. If A and B are $n \times n$ invertible matrices, is $A+B$ invertible?
No. For example, if $B=-A=I_{2}$, then $A+B=0$ is not invertible.

Example 5. If A is invertible, is A^{m} invertible? What is the inverse?
Yes. $\left(A^{m}\right)^{-1}=\left(A^{-1}\right)^{m}$, since $A^{m}\left(A^{-1}\right)^{m}=A \cdots A \cdot A^{-1} \cdots A^{-1}=I$.

Theorem. [The inverse matrix theorem]

Let A be an $n \times n$ matrix. Then the next statements are all equivalent (that is, they are either all true or all false).
(1) The matrix A is invertible.
(2) There is a square matrix B such that $B A=I$.
(3) The linear system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(4) $\operatorname{rank} A=n$.
(5) The reduced row echelon form of A is identity matrix, i.e. $\operatorname{rref}(A)=I_{n}$.
(6) The matrix A is a product of elementary matrices.
(7) There is a square matrix C such that $A C=I_{n}$.
(8) The linear system $A \vec{x}=\vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^{n}$.
(9) The linear transformation T_{A} is one-to-one.
(10) The linear transformation T_{A} is onto.

Proof.

$(1) \Rightarrow(2)$ Obvious.
$(2) \Rightarrow(3)$ Multiply B on left, we get $B A \vec{x}=\overrightarrow{0}$. So $\vec{x}=\overrightarrow{0}$ is the only solution.
$(3) \Rightarrow(4)$ By Proposition in $\S 1.3$.
$(4) \Rightarrow(5)$ Obvious.
$(5) \Rightarrow(6) E A=\operatorname{rref}(A)=I_{n}$ where $E=E_{1} \cdots E_{s}$ is a product of elementary matrices.
So, $A=E_{s}^{-1} \cdots E_{1}^{-1}$ is a product of elementary matrices.
$(6) \Rightarrow(1)$ The reason is that elementary matrices are invertible matrices and product of invertible matrices are invertible.
We have proved that $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(6) \Rightarrow(1)$. So, the first six statements are equivalent.
$(1) \Rightarrow(7)$ is obvious. $(7) \Rightarrow(4): \operatorname{rank}(A C)=\operatorname{rank}\left(I_{n}\right)=n$. So rank $A \geq \operatorname{rank}(A C)=n$. This shows that (7) is also equivalent to the above six statements.
$(8) \Rightarrow(6)$ is obviously. $(1) \Rightarrow(8)$. Since $A^{-1} A=I$ and A^{-1} is unique, then $\vec{x}=A^{-1} \vec{b}$ is the unique solution. Hence the first eight statements are equivalent.
T_{A} is one-to-one if and only if (3). Hence the first nine statements are equivalent.
Since $T_{A}(\vec{x})=A \vec{x},(8) \Rightarrow(10)$ is clear. $(10) \Rightarrow(7)$ is clear.

This is a standard method to show equivalent statements. We don't have to show the other directions. Some of them may hard to show directly.

Example 6. If A, B and C are $n \times n$ matrices and $A B C=I_{n}$, is each of the matrices invertible? What are their inverses?

Yes. $A^{-1}=B C$ and $C^{-1}=A B$.
From $C^{-1}=A B$, we have $I_{n}=C C^{-1}=C A B$, so $B^{-1}=C A$.

Proposition.

Suppose A and B are $n \times n$ matrices. If $A B$ is invertible, then both A and B are invertible.

Since $A B$ is invertible, then there is a matrix C such that $A B C=I_{n}$. Use above example we proved the result.

Another proof for the proposition is from $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

The Inverse of a Linear Transformation

Definition (Invertible Transformations)

A transformation $T: X \rightarrow Y$ is said to be invertible (or bijective) if the equation $T(\vec{x})=\vec{y}$ has a unique solution \vec{x} for any $\vec{y} \in Y$.
Equivalently, there is a transformation $S: Y \rightarrow X$ such that

$$
\begin{aligned}
& S(T(\vec{x}))=\vec{x}, \text { for all } \vec{x} \in X \\
& T(S(\vec{y}))=\vec{y}, \text { for all } \vec{y} \in Y
\end{aligned}
$$

Remark. Such a transformation $S: Y \rightarrow X$, if it exists, is unique and is called the inverse transformation of T. We shall use the notion $S=T^{-1}$ to denote the inverse transformation of T.

Recall that for an $n \times n$ matrix A we defined the associated linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} by

$$
T_{A}(\vec{x})=A \vec{x} .
$$

Definition (Invertible Linear Transformations)

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called invertible if for any $\vec{y} \in \mathbb{R}^{n}$ there is a unique $\vec{x} \in \mathbb{R}^{n}$ such that $T(\vec{x})=\vec{y}$.

Suppose the inverse $\left(T_{A}\right)^{-1}$ is defined by matrix B, then $T_{A}\left(T_{B}\right)=\mathrm{id}$ and $T_{B}\left(T_{A}\right)=\mathrm{id}$. Equivalently,

$$
A B=B A=I_{n}
$$

In this case, we will denote the inverse of A as A^{-1}

Theorem. [Invertibility of Linear Transformations]
The linear transformation $T_{A}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is invertible if and only if $m=n$ and A is an invertible matrix. In this case, the inverse of T_{A} is the linear transformation

$$
\left(T_{A}\right)^{-1}=T_{A^{-1}}
$$

MATLAB functions We list some basic MATLAB functions about linear system here.
Input matrices and vectors to MATLAB:

```
A=[1 -3 -5; 1 -1 -2; 3 -1 1];
B=[1 1 1; 2 3 2; 3 8 2];
b=[1; 0; 3];
c = [2 1 8];
```


Sum and scalar product

```
A+B
```

3A
transpose Transpose vector or matrix A^{T}
$\mathrm{C}=\mathrm{A} .{ }^{\prime}$
C = transpose (A)
mtimes Matrix multiplication $A B$
$\mathrm{C}=\mathrm{A} * \mathrm{~B}$
$C=$ mtimes (A, B)
mpower Matrix power A^{k}
$\mathrm{C}=\mathrm{A}^{\wedge} 3$
C = mpower (A,3)
inv Matrix inverse A^{-1}
$B^{\wedge}(-1)$
inv(B)
rank Rank of matrix A
$\operatorname{rank}(\mathrm{A})$

