- Instructor: He Wang
Email: he.wang@northeastern.edu

§2.3 Matrix Products

- We previously defined the multiplication of an $n \times m$ matrix A and an m-dimensional vector \vec{x}, which is itself a $m \times 1$ matrix. The result $A \cdot \vec{x}$ is an n-dimensional vector, which is the same as an $n \times 1$ matrix.

$$
(n \times m \text { matrix }) \cdot(m \times 1 \text { matrix })=n \times 1 \text { matrix }
$$

We shall next generalize this to multiplying more general matrices.

Definition:

Let A be an $n \times m$ matrix and B be a $m \times p$ matrix with columns $\vec{b}_{1}, \ldots, \vec{b}_{p}$. We then define the product of A and B, to be the $n \times p$ matrix

$$
A B:=\left[\begin{array}{llll}
A \cdot \vec{b}_{1} & A \cdot \vec{b}_{2} & \ldots & A \cdot \vec{b}_{p}
\end{array}\right]
$$

If the number of columns of A does not equal the number of rows of B, then $A B$ is not defined!

- The Row-Column Rule for Computing $A B$

Let A be an $n \times m$ matrix whose (i, j)-th entry is $a_{i j}$.
Let B be an $m \times p$ matrix whose (i, j)-th entry is $b_{i j}$.
Then the (i, j)-th entry of $A B$ is

$$
a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}
$$

which equals the dot product of the i-th row of A with the j-th column of B.

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i m}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{m j}
\end{array}\right]
$$

Example Calculate $A B$ for $A=\left[\begin{array}{cc}-3 & 5 \\ 4 & 2 \\ 1 & -5\end{array}\right]$, and $B=\left[\begin{array}{cc}2 & -4 \\ -4 & 1\end{array}\right]$.

$$
A B=\left[\begin{array}{cc}
-3 & 5 \\
4 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 \\
-4 & -(-4 \\
-4
\end{array}\right]=\left[\begin{array}{cc}
(-3) 2+5(-4) & (-3)(-4)+5 \\
(4) 2+2(-4) & 4(-4)+2 \\
(1) 2+(5)-(-4) & (-4)-5
\end{array}\right]=\left[\begin{array}{cc}
-26 & 17 \\
0 & -14 \\
22 & -9
\end{array}\right]
$$

\diamond Properties of Matrix Multiplication

Theorem. (Properties of Matrix Multiplication)

Let A be an $n \times m$ matrix, and let B and C be matrices for which the indicated operations are defined. Let In denote the $n \times n$ identity matrix.

- $A(B C)=(A B) C$. (Associativity of matrix multiplication)
- $A(B+C)=A B+A C$. (Left Distributive Law)
- $(A+B) C=A C+B C$. (Right Distributive Law)
- $r(A B)=(r A) B$. where r is any scalar.
- $I_{n} A=A=A I_{m}$. (Identity Law for Matrix Multiplication)

Each one is proved by direct verification. Let us verify the first associativity property. The rest verifications are easy. Suppose B is a $n \times p$ matrix and C is a $p \times q$ matrix. We compare the (i, j) position of both sides, using the sum notation.
For any $1 \leq i \leq m$ and $1 \leq j \leq q$,

$$
\begin{gathered}
{[A(B C)]_{i j}=\sum_{k=1}^{n} a_{i k}(B C)_{k j}=\sum_{k=1}^{n} a_{i k}\left(\sum_{l=1}^{p} b_{k l} c_{l j}\right)=\sum_{k=1}^{n} \sum_{l=1}^{p} a_{i k} b_{k l} c_{l j}} \\
{[(A B) C]_{i j}=\sum_{l=1}^{p}(A B)_{i l} c_{l j}=\sum_{l=1}^{p}\left(\sum_{k=1}^{n} a_{i k} b_{k l}\right) c_{l j}=\sum_{l=1}^{p} \sum_{k=1}^{n} a_{i k} b_{k l} c_{l j}=\sum_{k=1}^{n} \sum_{l=1}^{p} a_{i k} b_{k l} c_{l j}}
\end{gathered}
$$

So, $A(B C)=(A B) C$.

Example 1. $A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 3 & 7\end{array}\right]$
$B A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}4 & 6 \\ 3 & 4\end{array}\right]$
Example 2. $A B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right]$
$A C=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right]$
Example 3. $A B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Remark (Non-Properties of Matrix Multiplication)
Some familiar arithmetic properties of real numbers do not translate to analogue properties of matrices.

- Even when both $A B$ and $B A$ are defined, generally $A B \neq B A$.
- If $A B=A C$ it does not generally follow that $B=C$ (even when $A \neq 0$).
- If $A B=0$, it does not generally follow that either A or B is the zero matrix.

Definition.

If A is an $n \times n$ matrix and $k \geq 1$ an integer, we define the k-th power of A, denoted by A^{k}, as

$$
A^{k}=\underbrace{A \cdot A \cdots \cdots}_{k \text { factors }} .
$$

Example. Calculate $X^{2}, X^{3}, X^{4}, \ldots$ for the following matrices
$A=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad C=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right] \quad D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]=A \\
& A^{3}=A \quad A^{4}=A \quad A^{5}=A \quad \cdots \cdot \\
& B^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
& B^{3}=B^{2} B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \\
& 3^{n}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right] \\
& C^{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& C^{3}=C^{2} C=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& C^{n}=0 \text { for } n \geqslant 3 \text {. } \\
& D^{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{array}\right] \\
& D^{3}=\left[\begin{array}{llll}
1^{3} & & \\
& 2^{3} & \\
& & 3^{3}
\end{array}\right] \quad \cdots \quad D_{4}^{n}=\left[\begin{array}{lll}
1^{n} & 0 & 0 \\
0 & 2^{1} & 0 \\
0 & 0 & 3^{n}
\end{array}\right]
\end{aligned}
$$

Example 4. (HW 18) Find all matrices commute with

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Find all $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $B A=A B$

$$
\text { So, }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
-3 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$$
\text { So }\left[\begin{array}{cc}
2 a-3 b & 3 a+2 b \\
2 c-3 d & 3 c+2 d
\end{array}\right]=\left[\begin{array}{cc}
2 a+3 c & 2 b+3 d \\
-3 a+2 c & -3 b+2 d
\end{array}\right]
$$

$$
\text { So } 2 a-3 b=2 a+3 c \quad \Rightarrow-b=c
$$

$$
3 a+2 b=2 b+3 d \quad \Rightarrow \quad a=d
$$

$$
2 c-3 b=-3 a+2 c \quad \Rightarrow a=d
$$

$$
3 c+2 d=-3 b+2 d \quad \Rightarrow-b=c
$$

So All matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ commute with $\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$

$$
a, b \in \mathbb{R}
$$

\diamond Product of block matrices.

Let $A=\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]$ and $B=\left[\begin{array}{ll}B_{1} & B_{2} \\ B_{3} & B_{4}\end{array}\right]$. Then,

$$
A B=\left[\begin{array}{ll}
A_{1} B_{1}+A_{2} B_{3} & A_{1} B_{2}+A_{2} B_{4} \\
A_{3} B_{1}+A_{4} B_{3} & A_{3} B_{2}+A_{4} B_{4}
\end{array}\right]
$$

Here, suppose all matrix products are well defined.
Block products can simply the computation if some blocks are zero matrices.
Example 5. $A B=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ a & b \\ c & d\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=A_{1} B_{1}+A_{2} B_{2}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 7
\end{array}\right]
$$

\diamond Transpose of a matrix

Definition.

Given an $m \times n$ matrix A, we define the transpose matrix A^{T}, as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A.
Said differently, the rows of A^{T} are the columns of A, and the columns of A^{T} are the rows of A.

Example 6. $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right]$. Then $A^{T}=\left[\begin{array}{ll}1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8\end{array}\right]$
Example 7. The dot product can be written as matrix product

$$
\vec{v} \cdot \vec{w}=\vec{v}^{T} \vec{w}
$$

Theorem. [Properties of Matrix Transposition]

Let A and B be matrices such that the indicated operations are well defined.

- $\left(A^{T}\right)^{T}=A$.
- $(A+B)^{T}=A^{T}+B^{T}$.
- $(r A)^{T}=r A^{T}$ for any scalar r.
- $(A B)^{T}=B^{T} A^{T}$.

Theorem.

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- If $A B$ is defined, then $\operatorname{rank}(A B) \leq \operatorname{rank} A$ and $\operatorname{rank}(A B) \leq \operatorname{rank} B$.

Definition.

A square matrix A is called symmetric if $A^{T}=A$. The matrix A is called skewsymmetric if $A^{T}=-A$.

For example, the reflection matrix is symmetric and the rotation matrix is skew-symmetric.

\diamond Elementary matrices

Definition. [Elementary matrices]

An $n \times n$ matrix E is called elementary if it is obtained from the identity matrix I_{n} by a single row operation.
$E_{i j}$ denotes the elementary matrix obtained by switching the i-th and j-th rows of the identity matrix.
$E_{i}(c)$ denotes the elementary matrix obtained by multiplying the i-th row by the nonzero constant c.
$E_{i j}(d)$ denotes the elementary matrix adding d times the j-th row to the i-th row. (The order is from right to left)

Example 8. 3×3 matrices: $E_{12}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}(3)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right], E_{12}(3)=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Proposition. [Elementary matrices multiplications]

Multiply a matrix A with an elementary on the left side is equivalent to an elementary row operation is performed on the matrix A.

Example 9. $E_{i j} A$ is the matrix obtained from A by switch the i-th row and the j-the row.

$$
A \xrightarrow{R_{i} \leftrightarrow R_{j}} E_{i j} A
$$

Example 10. $E_{i}(c) A$ is the matrix obtained from A by multiplying the i-th row by the nonzero constant c.

$$
A \xrightarrow{c R_{i}} E_{i}(c) A
$$

Example 11. $E_{i j}(d) A$ is the matrix obtained from A by adding d times the j-th row to the i-th row.

$$
A \xrightarrow{R_{i}+d R_{j}} E_{i j}(d) A
$$

Remark: Multiply a matrix A with an elementary on the right side is equivalent to an elementary column operation is performed on the matrix A.

