• Instructor: He Wang Email: he.wang@northeastern.edu

§2.2 Linear Transformation in Geometry

Recall that given an $n \times m$ matrix A there is a linear transformation defined by $T(\vec{x}) = A \cdot \vec{x}$. Let us look at the following **examples**.

1. Scaling

For any constant k > 0, the matrix

$$kI_2 = \begin{bmatrix} k & 0\\ 0 & k \end{bmatrix}$$

defines a scaling transformation from \mathbb{R}^2 to \mathbb{R}^2 .

(1) If k > 1 this is a dilation (or enlargement).

(2) If 0 < k < 1, this is a contraction (or shrinking).

In general, for any constant k > 0, the matrix kI_n defines a scaling transformation from \mathbb{R}^n to \mathbb{R}^n . Moreover, the scaling transformation is given by $T(\vec{x}) = k\vec{x}$

For example

$$2I_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

defines transformation from $\mathbb{R}^3 \to \mathbb{R}^3$ by $T(\vec{x}) = 2\vec{x}$ for $\vec{x} \in \mathbb{R}^3$.

2. Orthogonal Projection

Recall that for vectors $\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n , the **dot product** of \vec{u} and \vec{v} is $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$.

Theorem. [Properties of the Inner Product]

For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$, the following hold:

- (1.) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
- (2.) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}.$
- (3.) $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v}).$
- (4.) $\vec{u} \cdot \vec{u} \ge 0$, and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$.

Definition. [Length of a Vector]

The **length** or **norm** of a vector $\vec{v} \in \mathbb{R}^n$, denoted by $||\vec{v}||$, is defined as

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

where v_1, \ldots, v_n are the coordinates of \vec{v} .

Example 2. Find the length of the following vectors.

$$\vec{u} = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$||\vec{u}|| = \sqrt{(\frac{3}{5})^2 + (\frac{4}{5})^2} = 1.$$
$$||\vec{v}|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}.$$
$$||\vec{v}|| = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}.$$

A vector \vec{u} is called an **unit vector** if $||\vec{u}|| = 1$.

If a vector \vec{w} is not an unit vector, we can find a unit vector on the same direction defined by

 $\frac{\vec{w}}{||\vec{w}||}$

and called the **normalization** of \vec{w} .

Example 3. Find the normalization of the vectors in Example 2.

Theorem.

For any vector $\vec{v} \in \mathbb{R}^n$ and any scalar $c \in \mathbb{R}$ one obtains

 $||c \cdot \vec{v}|| = |c| \cdot ||\vec{v}||.$

Definition. (Angles Between Vectors)

The **angle between two nonzero vectors** $\vec{u}, \vec{v} \in \mathbb{R}^n$ is the the angle $0 \le \theta \le \pi$ satisfying

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos \theta.$$

Or we can write

$$\theta = \arccos \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||}.$$

In particular, when $\vec{u} \cdot \vec{v} = 0$, the angle $\theta = \frac{\pi}{2}$.

Definition. [Orthogonal Vectors]

Two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ are said to be **orthogonal** or **perpendicular** if $\vec{u} \cdot \vec{v} = 0$.

Example 4. Find the angle between the following pairs of vectors.

$$\vec{u} = \begin{bmatrix} 1\\\sqrt{3} \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} -1\\2 \end{bmatrix}$; $\vec{u} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1\\-4\\3 \end{bmatrix}$

Definition. (Orthogonal Projection Onto A Line)

Let \vec{w} be a nonzero vector in \mathbb{R}^n and let $L = \text{Span}\{\vec{w}\}$ be the line in \mathbb{R}^n spanned by \vec{w} . For a given vector $\vec{y} \in \mathbb{R}^n$, the vector

$$y^{\parallel} = \operatorname{proj}_{L}(\vec{y}) := \left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$$

is called the **orthogonal projection of** \vec{y} **onto** L (or onto \vec{w}) and

 $\vec{y}^{\perp} := \vec{y} - \operatorname{proj}_L(\vec{y})$

the component of \vec{y} orthogonal to L (or \vec{w}).

For these two vectors one obtains

$$\vec{y} = \operatorname{proj}_{L}(\vec{y}) + \vec{y}^{\perp}$$
 and $\vec{w} \cdot \vec{y}^{\perp} = 0.$

Verification: The first one is obviously from definition of \vec{y}^{\perp} .

$$\vec{w} \cdot \vec{y}^{\perp} = \vec{w}(\vec{y} - \operatorname{proj}_{L}(\vec{y})) = \vec{w} \cdot \vec{y} - \vec{w} \cdot \operatorname{proj}_{L}(\vec{y})) = \vec{w} \cdot \vec{y} - \vec{w} \cdot \left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$$
$$= \vec{w} \cdot \vec{y} - \left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) (\vec{w} \cdot \vec{w}) = \vec{w} \cdot \vec{y} - \vec{y} \cdot \vec{w} = 0$$

Example 5. Let *L* be the line in \mathbb{R}^3 that is the span of vector $\vec{u} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$. Find a decomposition

of the vector $\vec{y} = \begin{bmatrix} 1\\ 2\\ 6 \end{bmatrix}$ as $\vec{y} = \text{proj}_L(\vec{y}) + \vec{y}^{\perp}$. Here $\text{proj}_L(\vec{y})$ is the orthogonal projection of \vec{y} onto L and \vec{y}^{\perp} is the component of \vec{y} orthogonal to L.

$$P^{n}\hat{y}_{L}(\vec{y}) = \left(\frac{\vec{y}\cdot\vec{u}}{\vec{u}\cdot\vec{u}}\right) \cdot \vec{u} = \frac{1+2+12}{+1+4} \begin{pmatrix} 1\\2 \end{pmatrix} = \frac{15}{6} \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} \frac{5}{2}\\\frac{5}{2}\\\frac{5}{2} \end{bmatrix}$$
$$\vec{y}^{4} = \vec{y}^{2} - P^{n}\hat{y}_{L}(\vec{y}) = \begin{bmatrix} 1\\2\\6 \end{bmatrix} - \begin{bmatrix} \frac{5}{2}\\\frac{5}{2}\\\frac{5}{2} \end{bmatrix} = \begin{bmatrix} -\frac{3}{2}\\-\frac{5}{2}\\\frac{7}{2}\\\frac{5}{2} \end{bmatrix}$$
$$\vec{y}^{2} = \begin{bmatrix} \frac{5}{2}\\\frac{5}{$$

Example 6. Let *L* be the line in \mathbb{R}^2 that is the span of vector $\vec{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Find a decomposition of the vector $\vec{y} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ as $\vec{y} = \text{proj}_L(\vec{y}) + \vec{y}^{\perp}$.

$$Pr\hat{g}_{2}(\vec{y}) = \left(\frac{\vec{y}\cdot\vec{w}}{\vec{w}\cdot\vec{w}}\right)\vec{w} = \left(\frac{4+6}{1+4}\right)\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$$
$$Y^{-}_{1} = \vec{y}-Pr\tilde{g}_{1}(\vec{y}) = \begin{bmatrix}4\\3\end{bmatrix} - \begin{bmatrix}2\\4\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$$
$$\vec{y}^{-}_{2} = \begin{bmatrix}2\\4\end{bmatrix} + \begin{bmatrix}2\\-\end{bmatrix}$$

Suppose $\vec{w} \in \mathbb{R}^n$ is a vector on line L and $\vec{u} = \frac{\vec{w}}{||\vec{w}||}$ is the **unit** vector on L.

Theorem.

The orthogonal projection $T(\vec{x}) = \text{proj}_L(\vec{x})$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^n .

Proof: We show that $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ and $T(c\vec{u}) = cT(\vec{u})$ for any $\vec{u}, \vec{v} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$. We know that $\operatorname{proj}_L(\vec{x}) := \left(\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$. $T(\vec{u} + \vec{v}) = \operatorname{proj}_L(\vec{u} + \vec{v}) = \left(\frac{(\vec{u} + \vec{v}) \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} = \left(\frac{\vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} = \left(\frac{\vec{u} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} + \left(\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} = \operatorname{proj}_L(\vec{u}) + \operatorname{proj}_L((\vec{v}) = T(\vec{u}) + T(\vec{v}).$ Similarly, we can verify $T(c\vec{u}) = cT(\vec{u})$. So, T is linear.

Hence, the matrix of the orthogonal projection is $[\operatorname{proj}_L(\vec{e}_1) \operatorname{proj}_L(\vec{e}_2) \cdots \operatorname{proj}_L(\vec{e}_n)]$.

In the case when n = 2, suppose $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathbb{R}^2$ and the unit vector is $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$

Theorem.

The **matrix** of the orthogonal projection $\text{proj}_L(\vec{x})$ is given by

$$P = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix}$$

Proof: We know that can can use the standard vectors $\vec{e_1}$ and $\vec{e_2}$ to find the matrix $P = [\operatorname{proj}_L(\vec{e_1}) \quad \operatorname{proj}_L(\vec{e_2})].$

$$\operatorname{proj}_{L}(\vec{e}_{1}) = \left(\frac{\vec{e}_{1} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} = \left(\frac{1w_{1} + 0w_{2}}{w_{1}^{2} + w_{2}^{2}}\right) \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} = \frac{1}{w_{1}^{2} + w_{2}^{2}} \begin{bmatrix} w_{1}^{2} \\ w_{1}w_{2} \end{bmatrix}$$

Similarly, we can calculate the second column $\text{proj}_L(\vec{e}_2)$.

Example 7. Find the matrix A for the orthogonal projection onto $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\mathsf{P} = \frac{\mathsf{I}}{\mathsf{I}} \begin{bmatrix} \mathsf{I} & \mathsf{o} \\ \mathsf{o} & \mathsf{o} \end{bmatrix} = \begin{bmatrix} \mathsf{I} & \mathsf{o} \\ \mathsf{o} & \mathsf{o} \end{bmatrix}$$

Example 8. Find the matrix A for the orthogonal projection onto the line L defined by the span of $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

$$P = \frac{1}{2^{2} + 3^{2}} \begin{bmatrix} 4 & 6 \\ 6 & 9 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Orthogonal projection onto a plane*.

Example 9. *Let V be the plane defined by $x_1 + x_2 + 2x_3 = 0$ and let $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$. Find a decomposition of $\vec{x} = \vec{y} + \vec{z}$ such that \vec{y} on plane V and \vec{z} is perpendicular to V.

The vector perpendicular to plane
$$X_1 + X_1 + 2X_5 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

From Example 5, $p_1 = \begin{bmatrix} 5/2 \\ 5/2 \\ 5 \end{bmatrix} = \vec{z}$
 $\vec{y}^2 = \vec{x}^2 - \vec{z}^2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} - \begin{bmatrix} 5/2 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} -3/2 \\ -1/2 \\ 1 \end{bmatrix}$

3. Reflection

Definition. (Reflection along a line)

Let \vec{w} be a nonzero vector in \mathbb{R}^2 and let $L = \text{Span}\{\vec{w}\}$ be the line in \mathbb{R}^2 spanned by \vec{w} . For a given vector $\vec{y} \in \mathbb{R}^2$, the vector

$$\operatorname{ref}_L(\vec{y}) := \vec{y}^{||} - \vec{y}^{\perp}$$

is called the **reflection of** \vec{y} **about** *L*. An equivalent formula is given by

$$\operatorname{ref}_L(\vec{y}) := 2 \operatorname{proj}_L(\vec{y}) - \vec{y}$$

Theorem.

The reflection $T(\vec{x}) = \operatorname{ref}_L(\vec{x})$ is a linear transformation. The matrix of T is given by

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

where $a^{2} + b^{2} = 1$

Here,
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
 is given by $\operatorname{ref}_L(\vec{e_1})$, where $\vec{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. $\begin{bmatrix} b \\ -a \end{bmatrix}$ is given by $\operatorname{ref}_L(\vec{e_2})$, where $\vec{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example 10. Find the matrix A of the reflection about $\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\operatorname{ref}_{L}(\overline{e}_{i}^{\prime}) = 2\operatorname{proj}_{L}(\overline{e}_{i}^{\prime}) - \overline{e}_{i}^{\prime} = 2\left(+\left[\begin{smallmatrix} i \\ b \end{smallmatrix}\right]\right) - \overline{e}_{i}^{\prime} = \left[\begin{smallmatrix} i \\ b \end{smallmatrix}\right]$$

So the matrix is $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Example 11. Find the matrix of the reflection about the line *L* defined by the span of $\vec{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Example 12. (Example 5 continued) Let L be the line in \mathbb{R}^3 that is the span of vector $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$. Find the reflection of $\vec{y} = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}$ about the line L.

$$ref_{L}(\overline{y}) = 2pr\hat{y}_{L}(\overline{y}) - \overline{y}$$
$$= 2\left[\frac{5}{2}\right] - \left[\frac{1}{2}\right] = \left[\frac{4}{3}\right]$$
$$= 2\left[\frac{5}{2}\right] - \left[\frac{1}{2}\right] = \left[\frac{4}{3}\right]$$

4. Rotation

Theorem. (Rotation)

The matrix of a counter-clockwise **rotation** in \mathbb{R}^2 trough an angle θ is

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

The matrix is of the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

where $a^2 + b^2 = 1$.

Example 13. Find the matrix of a counter-clockwise rotation in \mathbb{R}^2 trough an angle $\theta = \pi/3$.

$$\begin{bmatrix} c_{7}, \frac{\pi}{3}, -sh, \frac{\pi}{3} \\ sh_{3}^{\pi}, c_{7}, \frac{\pi}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}, -\frac{\pi}{2} \\ \frac{\pi}{2} \\ \frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix}$$

5. Rotation combined with a scaling

Theorem. (Rotation combined with a scaling)

The matrix is of the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

defines a linear transformation representing a counter-clockwise rotation of degree θ with a scaling k. Here, $k = \sqrt{a^2 + b^2}$ and $\cos \theta = \frac{a}{k}$ and $\sin \theta = \frac{b}{k}$.

Example 14. Describe the geometric meaning of the transformation defined by the matrix

$$\begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

Example 15. $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation which begins with first **reflection** ϕ about the line y = x, followed by **orthogonal projection** onto the line y = -x. Find the matrix of T.

Example 16. $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation which begins with first rotation ρ , counter-clockwise about the origin by angle $\theta = \frac{\pi}{4}$, followed by orthogonal projection onto the line y = 2x. Find the matrix of T.

6. Shear*

Theorem.

The matrix of a **horizontal shear** is of the form

 $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$

The matrix of a **vertical shear** is of the form

```
\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}
```

Example 17. * Draw the graph of transformation defined by the following matrices: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

