- Instructor: He Wang Email: he.wang@northeastern.edu
§2.2 Linear Transformation in Geometry
Recall that given an $n \times m$ matrix A there is a linear transformation defined by $T(\vec{x})=A \cdot \vec{x}$. Let us look at the following examples.

Example 1.

(1.) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \quad$ (Scaling)

(2.) $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad$ (Orthogonal Projection on to x_{1}-axis)

$$
T_{B}(\vec{x})=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]
$$

(3.) $C=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad$ (Reflection about x_{2}-axis)

(4.) $D=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \quad$ (Rotate 90° clockwise)

(5.) $E=\left[\begin{array}{cc}1 & 0.2 \\ 0 & 1\end{array}\right] \quad$ (Horizontal shear)

(6.) $F=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad$ (Rotate 45° and scaling by $\sqrt{2}$)

1. Scaling

For any constant $k>0$, the matrix

$$
k I_{2}=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]
$$

defines a scaling transformation from \mathbb{R}^{2} to \mathbb{R}^{2}.
(1) If $k>1$ this is a dilation (or enlargement).
(2) If $0<k<1$, this is a contraction (or shrinking).

In general, for any constant $k>0$, the matrix $k I_{n}$ defines a scaling transformation from \mathbb{R}^{n} to \mathbb{R}^{n}. Moreover, the scaling transformation is given by $T(\vec{x})=k \vec{x}$

For example

$$
2 I_{3}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

defines transformation from $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(\vec{x})=2 \vec{x}$ for $\vec{x} \in \mathbb{R}^{3}$.

2. Orthogonal Projection

Recall that for vectors $\vec{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ in \mathbb{R}^{n}, the dot product of \vec{u} and \vec{v} is

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Theorem. [Properties of the Inner Product]

For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and a scalar $c \in \mathbb{R}$, the following hold:
(1.) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$.
(2.) $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$.
(3.) $(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})=\vec{u} \cdot(c \vec{v})$.
(4.) $\vec{u} \cdot \vec{u} \geq 0$, and $\vec{u} \cdot \vec{u}=0$ if and only if $\vec{u}=\overrightarrow{0}$.

Definition. [Length of a Vector]

The length or norm of a vector $\vec{v} \in \mathbb{R}^{n}$, denoted by $\|\vec{v}\|$, is defined as

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

where v_{1}, \ldots, v_{n} are the coordinates of \vec{v}.

Example 2. Find the length of the following vectors.
$\vec{u}=\left[\begin{array}{l}\frac{3}{5} \\ \frac{4}{5}\end{array}\right], \vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=1 \\
& \|\vec{v}\|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14} \\
& \|\vec{v}\|=\sqrt{1^{2}+2^{2}+3^{2}+4^{2}}=\sqrt{30}
\end{aligned}
$$

A vector \vec{u} is called an unit vector if $\|\vec{u}\|=1$.

If a vector \vec{w} is not an unit vector, we can find a unit vector on the same direction defined by

$$
\frac{\vec{w}}{\|\vec{w}\|}
$$

and called the normalization of \vec{w}.
Example 3. Find the normalization of the vectors in Example 2.
\vec{u} is a unit vector

$$
\frac{\vec{v}}{\|\vec{v}\|}=\left[\begin{array}{l}
1 / \sqrt{14} \\
2 / \sqrt{14} \\
3 / \sqrt{4}
\end{array}\right] \quad \frac{\vec{w}}{\|\vec{w}\|}=\left[\begin{array}{l}
1 / \sqrt{30} \\
2 / \sqrt{30} \\
3 / \sqrt{30} \\
4 / \sqrt{30}
\end{array}\right]
$$

Theorem.

For any vector $\vec{v} \in \mathbb{R}^{n}$ and any scalar $c \in \mathbb{R}$ one obtains

$$
\|c \cdot \vec{v}\|=|c| \cdot\|\vec{v}\| .
$$

Definition. (Angles Between Vectors)

The angle between two nonzero vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ is the the angle $0 \leq \theta \leq \pi$ satisfying

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \cos \theta .
$$

Or we can write

$$
\theta=\arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot\|\vec{v}\|}
$$

In particular, when $\vec{u} \cdot \vec{v}=0$, the angle $\theta=\frac{\pi}{2}$.

Definition. [Orthogonal Vectors]

Two vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are said to be orthogonal or perpendicular if $\vec{u} \cdot \vec{v}=0$.

Example 4. Find the angle between the following pairs of vectors.
$\vec{u}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}-1 \\ 2\end{array}\right] ; \quad \vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}-1 \\ -4 \\ 3\end{array}\right]$

$$
\begin{aligned}
& \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{-1+2 \sqrt{3}}{\sqrt{4 \sqrt{5}}}=\frac{1+2 \sqrt{3}}{\sqrt{\sqrt{2}_{0}}}
\end{aligned} \begin{aligned}
& \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \vec{v} \|}=\frac{0}{\|\overrightarrow{\vec{v} \|}\| \vec{v} \|}=0 \\
& \theta=\arccos \left(\frac{-1+2 \sqrt{3}}{\sqrt{20}}\right) \\
& \vec{u} \text { is perpendiundv} t \vec{v} \\
& \text { so } \theta=\frac{\pi}{2}
\end{aligned}
$$

Definition. (Orthogonal Projection Onto A Line)

Let \vec{w} be a nonzero vector in \mathbb{R}^{n} and let $L=\operatorname{Span}\{\vec{w}\}$ be the line in \mathbb{R}^{n} spanned by \vec{w}. For a given vector $\vec{y} \in \mathbb{R}^{n}$, the vector

$$
y^{\|}=\operatorname{proj}_{L}(\vec{y}):=\left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}
$$

is called the orthogonal projection of \vec{y} onto L (or onto \vec{w}) and

$$
\vec{y}^{\perp}:=\vec{y}-\operatorname{proj}_{L}(\vec{y})
$$

the component of \vec{y} orthogonal to L (or \vec{w}).

For these two vectors one obtains

$$
\vec{y}=\operatorname{proj}_{L}(\vec{y})+\vec{y}^{\perp} \quad \text { and } \quad \vec{w} \cdot \vec{y}^{\perp}=0 .
$$

Verification: The first one is obviously from definition of \vec{y}^{\perp}.

$$
\begin{aligned}
\vec{w} \cdot \vec{y}^{\perp} & \left.=\vec{w}\left(\vec{y}-\operatorname{proj}_{L}(\vec{y})\right)=\vec{w} \cdot \vec{y}-\vec{w} \cdot \operatorname{proj}_{L}(\vec{y})\right)=\vec{w} \cdot \vec{y}-\vec{w} \cdot\left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} \\
& =\vec{w} \cdot \vec{y}-\left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right)(\vec{w} \cdot \vec{w})=\vec{w} \cdot \vec{y}-\vec{y} \cdot \vec{w}=0
\end{aligned}
$$

Example 5. Let L be the line in \mathbb{R}^{3} that is the span of vector $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Find a decomposition of the vector $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ as $\vec{y}=\operatorname{proj}_{L}(\vec{y})+\vec{y}^{\perp}$. Here $\operatorname{proj}_{L}(\vec{y})$ is the orthogonal projection of \vec{y} onto L and \vec{y}^{\perp} is the component of \vec{y} orthogonal to L.

$$
\left.\begin{array}{l}
\operatorname{proj}_{L}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \cdot \vec{u}=\frac{1+2+12}{1+1+4}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\frac{15}{6}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 / 2 \\
5 / 2 \\
5
\end{array}\right] \\
\vec{y} L=\vec{y}-\operatorname{pror}_{L}(\vec{y})=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]-\left[\begin{array}{c}
5 / 2 \\
5 / 2 \\
5
\end{array}\right]=\left[\begin{array}{c}
-3 / 2 \\
-1 / 2 \\
1
\end{array}\right] \\
5 / 2 \\
5
\end{array}\right]+\left[\begin{array}{c}
-3 / 2 \\
-1 / 2 \\
1
\end{array}\right] \quad . \quad l
$$

Example 6. Let L be the line in \mathbb{R}^{2} that is the span of vector $\vec{w}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find a decomposition of the vector $\vec{y}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$ as $\vec{y}=\operatorname{proj}_{L}(\vec{y})+\vec{y}^{\perp}$.

$$
\begin{aligned}
& \operatorname{prog}_{L}(\vec{y})=\left(\frac{\vec{y} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\left(\frac{4+6}{1+4}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& y^{\prime}=\vec{y}-\operatorname{poj}_{L}(\vec{y})=\left[\begin{array}{l}
4 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
-1
\end{array}\right] \\
& \vec{y}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]+\left[\begin{array}{l}
2 \\
-1
\end{array}\right]
\end{aligned}
$$

Suppose $\vec{w} \in \mathbb{R}^{n}$ is a vector on line L and $\vec{u}=\frac{\vec{w}}{\|\vec{w}\|}$ is the unit vector on L.

Theorem.

The orthogonal projection $T(\vec{x})=\operatorname{proj}_{L}(\vec{x})$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n}.

Proof: We show that $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ and $T(c \vec{u})=c T(\vec{u})$ for any $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}$.
We know that $\operatorname{proj}_{L}(\vec{x}):=\left(\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}$.
$T(\vec{u}+\vec{v})=\operatorname{proj}_{L}(\vec{u}+\vec{v})=\left(\frac{(\vec{u}+\vec{v}) \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\left(\frac{\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\left(\frac{\vec{u} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}+$
$\left(\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\operatorname{proj}_{L}(\vec{u})+\operatorname{proj}_{L}((\vec{v})=T(\vec{u})+T(\vec{v})$.
Similarly, we can verify $T(c \vec{u})=c T(\vec{u})$. So, T is linear.

Hence, the matrix of the orthogonal projection is $\left[\operatorname{proj}_{L}\left(\vec{e}_{1}\right) \operatorname{proj}_{L}\left(\vec{e}_{2}\right) \cdots \operatorname{proj}_{L}\left(\vec{e}_{n}\right)\right]$.

In the case when $n=2$, suppose $\vec{w}=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \in \mathbb{R}^{2}$ and the unit vector is $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \in \mathbb{R}^{2}$

Theorem.

The matrix of the orthogonal projection $\operatorname{proj}_{L}(\vec{x})$ is given by

$$
P=\frac{1}{w_{1}^{2}+w_{2}^{2}}\left[\begin{array}{cc}
w_{1}^{2} & w_{1} w_{2} \\
w_{1} w_{2} & w_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
u_{1}^{2} & u_{1} u_{2} \\
u_{1} u_{2} & u_{2}^{2}
\end{array}\right]
$$

Proof: We know that can can use the standard vectors \vec{e}_{1} and \vec{e}_{2} to find the matrix $P=\left[\operatorname{proj}_{L}\left(\vec{e}_{1}\right) \quad \operatorname{proj}_{L}\left(\vec{e}_{2}\right)\right]$.

$$
\operatorname{proj}_{L}\left(\vec{e}_{1}\right)=\left(\frac{\vec{e}_{1} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w}=\left(\frac{1 w_{1}+0 w_{2}}{w_{1}^{2}+w_{2}^{2}}\right)\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\frac{1}{w_{1}^{2}+w_{2}^{2}}\left[\begin{array}{c}
w_{1}^{2} \\
w_{1} w_{2}
\end{array}\right]
$$

Similarly, we can calculate the second column $\operatorname{proj}_{L}\left(\vec{e}_{2}\right)$.

Example 7. Find the matrix A for the orthogonal projection onto $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

$$
P=\frac{1}{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Example 8. Find the matrix A for the orthogonal projection onto the line L defined by the span of $\vec{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

$$
P=\frac{1}{2^{2}+3^{2}}\left[\begin{array}{ll}
4 & 6 \\
6 & 9
\end{array}\right]=\left[\begin{array}{ll}
4 / 3 & 6 / 3 \\
6 / 3 & 9 / 3
\end{array}\right]
$$

Orthogonal projection onto a plane*.
Example 9. *Let V be the plane defined by $x_{1}+x_{2}+2 x_{3}=0$ and let $\vec{x}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$. Find a decomposition of $\vec{x}=\vec{y}+\vec{z}$ such that \vec{y} on plane V and \vec{z} is perpendicular to V.

The vector perpendicular to plane $x_{1}+x_{2}+2 x_{3} 0$ is $\vec{\omega}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
From Example 5, $\operatorname{pog}_{\vec{w}} \vec{x}=\left[\begin{array}{c}5 / 2 \\ 5 / 2 \\ 5\end{array}\right]=\vec{z}$
$\vec{y}=\vec{x}-\vec{z}=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]-\left[\begin{array}{c}5 / 2 \\ 5 / 2 \\ 5\end{array}\right]=\left[\begin{array}{c}-3 / 2 \\ -1 / 2 \\ 1\end{array}\right]$.

3. Reflection

Definition. (Reflection along a line)
Let \vec{w} be a nonzero vector in \mathbb{R}^{2} and let $L=\operatorname{Span}\{\vec{w}\}$ be the line in \mathbb{R}^{2} spanned by \vec{w}. For a given vector $\vec{y} \in \mathbb{R}^{2}$, the vector

$$
\operatorname{ref}_{L}(\vec{y}):=\vec{y}^{\|}-\vec{y}^{\perp}
$$

is called the reflection of \vec{y} about L. An equivalent formula is given by

$$
\operatorname{ref}_{L}(\vec{y}):=2 \operatorname{proj}_{L}(\vec{y})-\vec{y}
$$

Theorem.

The reflection $T(\vec{x})=\operatorname{ref}_{L}(\vec{x})$ is a linear transformation. The matrix of T is given by

$$
\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

where $a^{2}+b^{2}=1$

Here, $\left[\begin{array}{l}a \\ b\end{array}\right]$ is given by $\operatorname{ref}_{L}\left(\vec{e}_{1}\right)$, where $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] .\left[\begin{array}{c}b \\ -a\end{array}\right]$ is given by $\operatorname{ref}_{L}\left(\vec{e}_{2}\right)$, where $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Example 10. Find the matrix A of the reflection about $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

$$
\operatorname{ref}_{L}\left(\overrightarrow{e_{1}}\right)=2 \text { prog }\left(\overrightarrow{e_{1}}\right)-\vec{e}_{1}=2\left(\frac{1}{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)-\overrightarrow{e_{1}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\text { So the matrix is }\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Example 11. Find the matrix of the reflection about the line L defined by the span of $\vec{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

$$
\begin{aligned}
& \operatorname{proj}_{L}\left(\overrightarrow{e_{1}}\right)=\binom{\vec{u} \cdot \overrightarrow{e_{1}}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{2}{4+9}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 / 13 \\
6 / 13
\end{array}\right] \\
& \operatorname{ref}\left(\overrightarrow{e_{1}}\right)=2 p^{20} \vec{j}_{L}\left(\overrightarrow{e_{1}}\right)-\vec{e}_{1}=\left[\begin{array}{l}
8 / 13 \\
1 / 13
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{13} \\
1 / 3
\end{array}\right] \\
& \text { the matrix is }\left[\begin{array}{cc}
-\frac{5}{13} & \frac{12}{13} \\
\frac{12}{13} & \frac{5}{13}
\end{array}\right]
\end{aligned}
$$

Example 12. (Example 5 continued) Let L be the line in \mathbb{R}^{3} that is the span of vector $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. Find the reflection of $\vec{y}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ about the line L.

$$
\begin{aligned}
\operatorname{ref}_{L}(\vec{y}) & =2 \operatorname{pro}_{L}(\vec{y})-\vec{y} \\
& =2\left[\begin{array}{c}
5 / 2 \\
5 / 2 \\
5
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
4
\end{array}\right]
\end{aligned}
$$

4. Rotation

Theorem. (Rotation)

The matrix of a counter-clockwise rotation in \mathbb{R}^{2} trough an angle θ is

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

The matrix is of the form

$$
\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

where $a^{2}+b^{2}=1$.

Example 13. Find the matrix of a counter-clockwise rotation in \mathbb{R}^{2} trough an angle $\theta=$ $\pi / 3$.

$$
\left[\begin{array}{cc}
\cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\
\sin \frac{\pi}{3} & \cos \frac{\pi}{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]
$$

5. Rotation combined with a scaling

Theorem. (Rotation combined with a scaling)

The matrix is of the form

$$
\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

defines a linear transformation representing a counter-clockwise rotation of degree θ with a scaling k.
Here, $k=\sqrt{a^{2}+b^{2}}$ and $\cos \theta=\frac{a}{k}$ and $\sin \theta=\frac{b}{k}$.

Example 14. Describe the geometric meaning of the transformation defined by the matrix

$$
\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right]
$$

$$
k=\sqrt{a^{2}+b^{2}}=\sqrt{3+1}=2
$$

$$
\left.\begin{array}{l}
\cos \theta=\frac{a}{k}=\frac{\sqrt{3}}{2} \\
\sin \theta=\frac{b}{k}=\frac{1}{2}
\end{array}\right\} \Rightarrow \theta=\frac{\pi}{6}
$$

The matrix defines a linear transformation representing
a countar-clockuise rotation of degee $\theta=\frac{\pi}{6}$ with a scaling $k=2$.

Example 15. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which begins with first reflection ϕ about the line $y=x$, followed by orthogonal projection onto the line $y=-x$. Find the matrix of T.

Step) A vector on Line $y=x$ is $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Step 3 The matrix of T

$$
\operatorname{ref}_{\vec{u}}\left(\vec{e}_{1}\right)=2 \operatorname{prg}_{\vec{u}}\left(\overrightarrow{e_{1}}\right)-\vec{e}_{1}=2\left(\frac{1}{2}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The mothy A of the reflection ϕ is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

is

Step 2. Avector on $\operatorname{Lin} y=-x$ is $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
The math B of artagomil projection is $B=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$

$$
\begin{aligned}
B A & =\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
\end{aligned}
$$

Example 16. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which begins with first rotation ρ, counter-clockwise about the origin by angle $\theta=\frac{\pi}{4}$, followed by orthogonal projection onto the line $y=2 x$. Find the matrix of T.

Step):
Thematic A of rotation φ is

$$
\left[\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & =\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

Sex 2:
A vector on $y=2 x$ is $\vec{w}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
The matrix B of orthogonal pajeecton is $B^{2} \frac{1}{1^{2}+2^{2}}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
6. Shear*

Theorem.

The matrix of a horizontal shear is of the form

$$
\left[\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right]
$$

The matrix of a vertical shear is of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]
$$

Example 17. * Draw the graph of transformation defined by the following matrices: $A=$ $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

Horizontal shear T_{A} :

Vertical shear T_{B} :

