
Math 2331 §1.3 On The Solution of Linear Systems; Matrix Algebra He Wang

• Instructor: He Wang Email: he.wang@northeastern.edu

§1.3 On The Solution of Linear Systems; Matrix Algebra

A linear system is said to be consistent if there is at least one solution. It is inconsistent
if there is no solution.

Theorem. Number of solutions of a linear system

A linear system is inconsistent if and only if a row-echelon from(ref) of the augmented
matrix has a row

[ 0 0 0 . . . 0 | b ] with b 6= 0.

Moreover, if a linear system is consistent, it has either
• a unique solution (no free variables), or
• infinitely many solutions (at least one free variable).

Examples:

Denote the square box as non-zero number.

Example 1. Find all possible h and k such that the linear system{
x1 + hx2 = 1

3x1 + 12x2 = k
has no solution.[

1 h 1
3 12 k

]
R2−3R1−−−−→

[
1 h 1
3 12− 3h k − 3

]
So, by the above theorem, the linear system has no solution only if 12 − 3h = 0 and
k − 3 6= 0, that is, k = 4 and k 6= 3.

Definition.

The rank of a matrix A is the number of the leading entries in either ref(A) or
rref(A), denoted by rank(A).
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Consider a linear system of n equations with m variables. That is the coefficient matrix A
is of size n×m.

Use the rankA=“number of pivots”=m-“number of free variables”, we can get the following
properties.

Proposition.

Consider a linear system with coefficient matrix A is of size n×m.

(1.) rank(A) ≤ n and rank(A) ≤ m.

(2.) If the system is inconsistent, then rank(A) < n.

(3.) If the system has exactly one solution, then rank(A) = m.

(4.) If the system has infinitely many solutions, then rank(A) < m.

Remark: Try to understand the following properties. Do not try to memorize them literally.
Use the ref or rref of A to understand each property.
(1). The number of pivots is smaller or equal the number of rows or columns.
(2). If the system is inconsistent, then there is a row of form [0 0 · · · 0 1] in the rref of the
augmented matrix. So, there is a row of zeros in rref(A), so rank(A) is smaller than the
number of rows.
(3). If the system has exactly one solution, then each variable must be on a pivot column,
so, the number of variables (m) = the number of pivots (rank(A)).
(4). If the system has infinitely many solutions, then there is at least one free variable. So
there are more variables than pivots.

Consequently, (using (3.) and (1.))
(a). If the system has exactly one solution, then the number of variables must be not more
than the number of equations (m ≤ n).
(b). If a linear system has more variables than equations (m > n), then it has either no
solution or infinitely many solutions.

Items (a) and (b) are contrapositive.

Review a little of logic statements:

Consider any conditional statement (s): If H, then C.
The contrapositive of (s): If not C, then not H.

Contrapositive of any true statement is also true.
Contrapositive of any false statement is also false.
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The converse of (s) is: If C, then H.
The inverse of (s) is: If not H, then not C.

The converse or inverse of a true conditional statement (s) may be false.

The inverse of (s) and the converse of (s) are contrapositive.

Example 2. Consider the converse and inverse of (a) and determine whether or not they
are true or false.

The converse of (a): If the number of variables is not more than the number of equa-
tions, then the system has exactly one solution.
The inverse of (a): If the system has no solution or infinitely many solutions, then the
number of variables must be more than the number of equations (m > n).

Both are false, for example, the augmented matrix

[
1 1 1
1 1 1

]
has infinitely many

solutions.

Proposition.

A linear system with an n×n coefficient matrix A has exactly one solution if and only
if rank(A) = n. In this case rref(A) = In.

I Matrix Algebra

Definition.

• The sum A + B of n×m matrices A and B is the new n×m matrix obtained by
adding corresponding entries of A and B.

• The scalar product r ·A of a scalar (real number) r and a matrix A is the matrix
obtained by multiplying each entry of A by r.

Example 3. Given the matrices A,B,C,

A =

[
1 −2
−3 7

]
, B =

[
2 0
−1 −5

]
, C =

[
1 2 −2
3 −2 6

]
Compute A + B, 3A and A + C.
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A + B =

[
1 + 2 −2 + 0
−3− 1 7− 5

]
=

[
3 −2
−4 2

]

3A =

[
3(1) 3(−2)

3(−3) 3(7)

]
=

[
3 −6
−9 21

]
A + C = Undefined.

Theorem. Algebraic properties of matrix operations

For n×m matrices A,B,C and scalar r, s, the following hold.

(1) A + B = B + A; (5) r(A + B) = rA + rB;

(2) (A + B) + C = A + (B + C); (6) (r + s)A = rA + sA;

(3) A + 0 = A; (7) r(sA) = (rs)A;

(4) A + (−A) = 0; (8) 1A = A.

Because vectors are special matrices, the operations sum and scalar products are also defined.
In particular, we denote −~v for (−1) · ~v.
Moreover, they have geometric meanings.

Example. Sum. (Parallelogram Rule)

~u + ~v =

[
3
−1

]
+

[
2
5

]
=

[
3 + 2
5− 1

]
=

[
5
4

]
.

Example. Scalar products 3~u and −~u.
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Recall from §1.2 H.W. 36,

Definition.

The dot product of two vectors

~u =


u1

u2
...
un

 and ~v =


v1
v2
...
vn


is defined as

~u · ~v = u1v1 + u2v2 + · · ·unvn

Remarks: 1. ~u and ~v must of the same size. 2. The dot product is not row-column-sensitive.

However, for generalization, we prefer to denote it as ~u · ~v =
[
u1 u2 · · · un

]

v1
v2
...
vn



Example 4. ~u =

1
2
3

 and ~v =

−1
3
2

.

The dot product ~u · ~v = 1(−1) + 2(3) + 3(2) = 11.

• Product of a matrix A and a vector ~x.
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Let A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

an1 an2 · · · anm

 be an n × m matrix with columns ~a1,~a2, . . . ,~am and rows

R1, R2, . . . , Rn. Let ~x be a vector in Rm.

Definition.

The product of A and ~x defined to be

A~x =


R1

R2

...

Rn

 ~x =


R1 · ~x
R2 · ~x

...

Rn · ~x



Theorem.

The product of A and ~x can also be computed as

A~x =
[
~a1 ~a2 . . . ~am

]


x1

x2
...
xm

 = x1~a1 + x2~a2 + · · ·+ xm~am.

Verification of the theorem: For n ×m matrix A, each formula gives us the result A~x =
a11x1 + a12x2 + · · ·+ a1mxm

a21x1 + a22x2 + · · ·+ a2mxm

...

an1x1 + an2x2 + · · ·+ anmxm


Remark: The above two formulas are equivalent. The 1st formula is better for computation.
The 2ed formula is better for theory.

Example 5.

From Definition 1.

A~x =

−5 −5 −3
0 −4 −4
1 1 4

−1
2
−3

 =

(−5)(−1) + (−5)(2) + (−3)(−3)
(−4)(2) + (−4)(−3)

(1)(−1) + (1)(2) + (4)(−3)

 =

 4
4
−11


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From Definition 2.

A~x =

−5 −5 −3
0 −4 −4
1 1 4

−1
2
−3

 = (−1)

−5
0
1

+ (2)

−5
−4
1

+ (−3)

−3
−4
4

 =

 4
4
−11



Or more generally,

A~x =

−5 −5 −3
0 −4 −4
1 1 4

x1

x2

x3

 =

(−5)(x1) + (−5)(x2) + (−3)(x3)
(−4)(x2) + (−4)(x3)

(1)(x1) + (1)(x2) + (4)(x3)


• Linear combination

Definition.

A vector ~b in Rn is called linear combination of ~v1, ~v2, . . . , ~vm in Rn if there exist
scalars x1, x2, ..., xm such that

~b = x1~v1 + x2~v2 + · · ·+ xm~vm

Example 6. Is ~b =

 7
4
15

 a linear combination of ~u =

 1
−2
5

 and ~v =

2
5
0

?

rref =

1 0 3
0 1 2
0 0 0

. So, yes.
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Theorem.

Let A be an n×m matrix with columns ~a1,~a2, . . . ,~am, and let ~b be a vector in Rn.
Then the matrix equation

A~x = ~b

has the same solution set as the vector equation

x1~a1 + x2~a2 + · · ·+ xm~am = ~b,

which has the same solution set as the linear system with augmented matrix[
~a1 ~a2 . . . ~an ~b

]
.

Example.

Matrix equation

A~x =

−5 −5 −3
0 −4 −4
1 1 4

x1

x2

x3

 =

−5x1−5x2−3x3

−4x2−4x3

x1 + x2 + 4x3

 =

 4
4
−11



Vector equation:

x1

−5
0
1

+ x2

−5
−4
1

+ x3

−3
−4
4

 =

 4
4
−11


Linear system and Augmented matrix:


−5x1−5x2−3x3 = 4
−4x2−4x3 = 4
x1 + x2 + 4x3 = −11

−5 −5 −3 4
0 −4 −4 4
1 1 4 −11



Theorem. (Algebraic Rules for A~x)

If A is an n×m matrix, ~u and ~v are vectors in Rm and c is a scalar, then
(a) A(~u + ~v) = A~u + A~v
(b)A(c~u) = c(A~u).
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Proof: These two formulas can be verified by direct calculation. (To make it easy,
suppose m = n = 3.)

A(~u + ~v) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

u1

u2

u3

+

v1v2
v3

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

u1 + v1
u2 + v2
u3 + v3


=

 a11(u1 + v1) + a12(u2 + v2) + a13(u3 + v3)

a21(u1 + v1) + a22(u2 + v2) + a23(u3 + v3)

a31(u1 + v1) + a32(u2 + v2) + a33(u3 + v3)


=

 a11(u1) + a12(u2) + a13(u3)

a21(u1) + a22(u2) + a23(u3)

a31(u1) + a32(u2) + a33(u3)

+

 a11(v1) + a12(v2) + a13(v3)

a21(v1) + a22(v2) + a23(v3)

a31(v1) + a32(v2) + a33(v3)


= A~u + A~v.

Question.

A =

 1 2
−2 5
5 0


Is the matrix equation A~x = ~b have a solution for every ~b ∈ R3?

rref(A) =

1 0
0 1
0 0


So, it is possible that rref(A|~b) =

1 0 0
0 1 0
0 0 1

 and the last row is a contradiction. For

example, when ~b =

 7
4
10

 .
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