§4.5 Flux through a surface - Surface Integrals

Review: From single variable integral to line integrals.

Definition.

We define the surface integral of $f(x, y, z)$ over the surface S

$$
\iint_{S} f(x, y, z) d S=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}
$$

Each area of the patch $\Delta S_{i j}$ can by computed by

$$
\Delta S_{i j} \approx\left|\vec{r}_{u} \times \vec{r}_{v}\right| \Delta u \Delta v
$$

Theorem.

Suppose a surface S is defined by $\vec{r}(u, v)$. The surface integral can be computed by

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
$$

In particular, if $f=1$, then

$$
\iint_{S} 1 d S=\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A=\text { Area of } S
$$

Example 1. Compute the surface integral $\iint_{S} x z d S$, where S is the sphere defined by $x^{2}+$ $y^{2}+z^{2}=1$ in the first octant.
parametric equation:

$$
\begin{array}{ll}
x=\sin \phi \cos \theta & 0 \leqslant \phi \leqslant \pi / 2 \\
y=\sin \phi \sin \theta & 0 \leqslant \theta \leqslant \pi / 2 \\
z=\cos \phi & 0 \leqslant t
\end{array}
$$

$\left|\vec{r}_{\phi} \times \vec{r}_{\theta}\right|=\sin \phi \quad$ (By Example 5 in section 3.11)

$$
\begin{aligned}
\iint_{S} x z d S & =\iint_{D} \sin \phi \cos \phi \cos \theta\left|\overrightarrow{r_{\phi}} \times \vec{r}_{\theta}\right| d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin ^{2} \phi \cos \phi \cos \theta d \phi d \theta \\
& =\int_{0}^{\pi / 2} \cos \theta d \theta \int_{D}^{\pi / 2} \sin ^{2} \phi \cos \phi d \phi
\end{aligned}
$$

$$
=\left.\left.\sin \theta\right|_{0} ^{\pi / 2} \frac{\sin ^{3} \phi}{3}\right|_{0} ^{\pi / 2}
$$

$$
=\frac{1}{3}
$$

If the surface S has an equation $z=g(x, y)$, then $\vec{r}(x, y)=\langle x, y, g(x, y)\rangle$, so

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$

Similarly, if the surface S has an equation $y=h(x, z)$, then $\vec{r}(x, y)=\langle x, h(x, z), z\rangle$, so

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, h(x, z), z) \sqrt{\left(\frac{\partial y}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial z}\right)^{2}+1} d A
$$

Similarly, if the surface S has an equation $x=h(y, z)$, you can write down formula for the surface integral.

Theorem.

If S is a union of S_{1} and S_{2}, then

$$
\iint_{S} f(x, y, z) d S=\iint_{S_{1}} f(x, y, z) d S+\iint_{S_{2}} f(x, y, z) d S
$$

Example 2. Evaluate the surface integral $\iint_{S} x d S$, where S is the surface $z=x^{2}+y$ for $0 \leq x \leq 1$ and $0 \leq y \leq 2$.

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =2 x \int_{S} \frac{\partial z}{\partial y}=1 \\
\iint_{D} x d s & =\int_{0} x \sqrt{(2 x)^{2}+1^{2}+1} d A \\
& =\int_{0}^{2} \int_{0}^{1} x \sqrt{4 x^{2}+2} d x d y \\
& =\int_{0}^{2} d y \int_{0}^{1} x \sqrt{4 x^{2}+2} d x \\
& =\left.2 \cdot \frac{1}{12}\left(4 x^{2}+2\right)^{\frac{3}{2}}\right|_{0} \\
& =\sqrt{6}-\frac{\sqrt{2}}{3} \\
& =\left(\frac{3}{6}-2^{\frac{3}{2}}\right) \\
& =1
\end{aligned}
$$

Let $u=4 x^{2}+2$

$$
d u=8 x d x
$$

$$
\frac{d u}{8}=x d x
$$

$$
\int x \sqrt{4 x^{2}+2} d x
$$

$$
=\int u^{\frac{1}{2}} \cdot \frac{1}{8} d u
$$

$$
=\frac{1}{8} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}}+C
$$

$$
=\frac{1}{12} u^{\frac{3}{2}}+C
$$

$$
=\frac{1}{12}\left(4 x^{2}+2\right)^{\frac{3}{2}}+c
$$

Example 3. Evaluate the surface integral $\iint_{S} y d S$, where S is the boundary surface of the solid region E enclosed by the cylinder $x^{2}+y^{2}=1$, the plane $z=0$ and the plane $z=1+y$.

$$
\iint_{S} y d s=\iint_{S_{1}} y d s+\iint_{S_{2}} y d s+\iint_{S_{3}} y d s
$$

$$
\begin{aligned}
\vec{r}_{\theta} \times \vec{r}_{z}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right| & =\langle\cos \theta, \sin \theta, 0\rangle \\
\left|\vec{r}_{\theta} \times \vec{r}_{z}\right| & =\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 \\
\iint_{S_{1}} y d S=\iint_{D} y \cdot\left|\vec{r}_{\theta} \times \vec{r}_{z}\right| d A & =\iint_{D} y d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1+\sin \theta} \sin \theta d z d \theta \\
& =\int_{0}^{2 \pi} \sin \theta(1+\sin \theta) d \theta \\
& =\int_{0}^{2 \pi} \sin \theta d \theta+\int_{0}^{2 \pi} \sin ^{2} \theta d \theta \\
& =0+\int_{0}^{2 \pi} \cdot \frac{1}{2}(1-\cos 2 \theta) d \theta \\
& =\frac{1}{2} \theta-\left.\frac{1}{4} \sin 2 \theta\right|_{0} ^{2 \pi}=\pi
\end{aligned}
$$

(2)
(3) S_{3}

$$
\begin{aligned}
S_{3} \quad Z & =1+y \\
\iint_{3} y d s & =\iint_{D} y \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial B}{\partial y}\right)^{2}}+1 d A \\
& =\iint_{D} \sqrt{2} y d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r \sin \theta \cdot r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sin \theta d \theta \cdot \int_{0}^{1} r^{2} d r \\
& =0
\end{aligned}
$$

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}
$$

$$
=\{(r, \theta) \mid 0 \leqslant r \leqslant 1, \quad 0 \leqslant \theta \leqslant 2 \pi\}
$$

$$
\begin{aligned}
& \text { S } \quad \quad x^{2}+y^{2} \leqslant 1 \quad z=0 \\
& x=\cos \theta \quad y=\sin \theta \\
& z=z \\
& 0 \leqslant \theta \leqslant 2 \pi \\
& \vec{r}_{\theta} \times \vec{r}_{z}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=\langle\cos \theta, \sin \theta, 0\rangle \\
& \vec{r}_{\theta} \times \vec{F}_{z} \mid=1 \quad \iint_{S_{2}} y d S=\iint_{D} y d A=\int_{0}^{2 \pi} \int_{0}^{0} \sin \theta d z d \theta=0
\end{aligned}
$$

Orientable Surfaces S :

Def: - It is possible to choose a unit normal vector \vec{n} at every point (x, y, z) on S such that \vec{n} varies continuous over S.

- The choice of \vec{n} provide S an orientation.
- There are two orientations on each orientible surfaces.

Examples (orientable)

1. Sphere
positive orientation

Example (not orentable)
Marius strip
2. cylinder

Surface integral of vector fields:

Let \vec{F} be a continuous vector field defined on an oriented surface S with unit normal vector \vec{n}.

Definition.

The surface integral of \vec{F} over S is defined as

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

This integral is called the flux of \vec{F} across(through) S.

Here,

$$
\vec{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|} \quad \text { and } \quad d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A .
$$

Theorem.

The surface integral of \vec{F} over S can also be computed by

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
$$

Theorem.

If the surface S is defined by $z=g(x, y)$, then the surface integral of \vec{F} over S can also be computed by

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
$$

Example 4. Find the surface integral of the vector field $\vec{F}=\langle z, y, x\rangle$ across the sphere $x^{2}+y^{2}+z^{2}=1$.
parametric $\quad x=\sin \phi \cos \theta \quad y=\sin \phi \sin \theta \quad z=\cos \phi \quad 0 \leqslant \phi \leqslant \pi$
equation:

$$
\begin{aligned}
& \vec{r}_{\phi} \times \vec{r}_{\theta}=\left\langle\sin ^{2} \phi \cos \theta, \sin ^{2} \phi \sin \theta, \sin \phi \cos \phi\right\rangle \\
& \vec{F}(\vec{r}(\phi, \theta)) \cdot\left(\overrightarrow{r_{\phi}} \times \vec{r}_{\theta}\right) \\
&=\cos \phi \sin ^{2} \phi \cos \theta+\sin ^{3} \phi \sin ^{2} \theta+\sin ^{2} \phi \cos \phi \cos \theta \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F}(\vec{r}) \cdot\left(\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}\right) d A \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi} 2 \sin ^{2} \phi \cos \phi \cos \theta+\sin ^{3} \phi \sin ^{2} \theta d \phi d \theta \\
&=2 \int_{0}^{\pi} \sin ^{2} \phi \cos \phi d \phi \cdot \int_{0}^{2 \pi} \cos \theta d \theta+\int_{0}^{\pi} \sin ^{3} \phi d \phi \cdot \int_{0}^{2 \pi} \sin ^{2} \theta d \theta \\
&=\left.\left.2 \frac{\sin ^{3} \phi}{3}\right|_{0} ^{\pi} \cdot \sin \theta\right|_{0} ^{2 \pi}+\int_{0}^{\pi}\left(1-\cos ^{2} \phi\right) \sin \phi d \phi \cdot \pi \\
&=0+\left.\left(-\cos \phi+\frac{\cos ^{3} \phi}{3}\right)\right|_{0} ^{\pi}(-\pi) \\
&=\frac{4}{3} \pi
\end{aligned}
$$

Example 5. Find the surface integral of the vector field $\vec{F}=\langle x, y, z\rangle$ across the sphere $x^{2}+y^{2}+z^{2}=4$.

$$
\begin{aligned}
& x=2 \sin \phi \cos \theta \quad y=2 \sin \phi \sin \theta \quad z=2 \cos \phi \quad 0 \leqslant \phi \leqslant \pi \\
& \vec{F}(\vec{r}) \cdot\left(\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}\right)=8 \sin ^{3} \phi \cos ^{2} \theta+8 \sin ^{3} \phi \sin ^{2} \theta+8 \sin \phi \cos ^{2} \theta \\
&=8 \sin ^{3} \phi+8 \sin \phi \cos ^{2} \theta \\
& \iint_{S} \vec{F} d \vec{s}=\iint_{D} \vec{F}(\vec{r}) \cdot\left(\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}\right) d A \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi} 8 \sin ^{3} \phi+8 \sin \phi \cos ^{2} \theta d \phi d \theta \\
&=8 \int_{0}^{2 \pi} \sin ^{3} \phi d \phi \int_{0}^{\pi} d \theta+8 \int_{0}^{2 \pi} \sin \phi d \phi \int_{0}^{\pi} \cos ^{2} \theta d \theta \\
&=8 \times \frac{4}{3} \cdot \pi+0 \\
&=\frac{32}{3} \pi .
\end{aligned}
$$

Example 6. Find the surface integral of the vector field $\vec{F}=\langle x, y, z\rangle$ across the paraboloid $z=-1+x^{2}+y^{2}$ and the plane $z=0$.

Denote the paraboloid $z=-1+x^{2}+y^{2}$ as S_{1} and denote the plane $z=0$ as S_{2}.

$$
\begin{aligned}
& \iint_{S_{1}} \vec{F} d \vec{S}=\iint_{D}\left(-P \cdot \frac{\partial z}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A \\
& =\iint_{D}\left(-2 x^{2}-2 y^{2}+\left(-1+x^{2}+y^{2}\right) d A\right. \\
& =\iint_{D}\left(-1-x^{2}-y^{2}\right) d A \quad D: \quad x^{2}+y^{2} \leqslant 1 \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(-1-r^{2}\right) \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{1}-r-r^{3} d r \\
& =\left.2 \pi\left(-\frac{r^{2}}{2}-\frac{r^{4}}{4}\right)\right|_{0} ^{1} \\
& =-\frac{3}{2} \pi \\
& \iint_{S_{2}} \vec{F} d \vec{S}=\iint_{D} R d A=\iint_{D} Z d A=0 . \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S_{1}} \vec{F} d \vec{S}+\iint_{S_{2}} \vec{F} d \vec{S}=-\frac{3 \pi}{2}
\end{aligned}
$$

