§4.3-4.4 continue: Curl and Divergence

Two operations on vector fields: 1. Curl and 2. Divergence.

1. Curl

Definition.

Let $\vec{F}=\langle P, Q, R\rangle$ be a vector field on \mathbb{R}^{3}. The curl of \vec{F} is defined as

$$
\operatorname{curl}(\vec{F})=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k}
$$

Recall the gradient vector

$$
\nabla f=\vec{i} \frac{\partial f}{\partial x}+\vec{j} \frac{\partial f}{\partial y}+\vec{k} \frac{\partial f}{\partial z}
$$

We can consider ("Del") ∇ as a vector differential operator defined as

$$
\nabla=\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle .
$$

An easier way to remember the curl of \vec{F} is using cross product

Theorem.

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}
$$

Proof.

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
Q & R
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
P & R
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
P & Q
\end{array}\right| \vec{k} \\
& =\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k} \\
& =\operatorname{curl}(\vec{F})
\end{aligned}
$$

Example 1. Find the curl of $\vec{F}=\left\langle x y z, z^{2}, 2 x y\right\rangle$

$$
\begin{aligned}
& \operatorname{cur}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z & z^{2} & 2 x y
\end{array}\right| \\
&=\vec{i}\left(\frac{\partial}{\partial y}(2 x y)-\frac{\partial}{\partial z}\left(z^{2}\right)\right)-\vec{j}\left(\frac{\partial}{\partial x}(2 x y)-\frac{\partial}{\partial z}(x y z)\right)+\vec{k}\left(\frac{\partial}{\partial x}\left(z^{2}\right)-\frac{\partial}{\partial y}(x y z)\right) \\
&=\vec{i}(2 x-2 z)-\vec{j}(2 y-x y)+\vec{k}(0-x z) \\
&=2(x-z) \vec{i}+y(x-2) \vec{j}+(-x z) \vec{k} \\
&=\langle 2(x-z), y(x-2),-x z\rangle
\end{aligned}
$$

Theorem.
Let f be a function in \mathbb{R}^{3} and f has continuous second order partial derivatives, then

$$
\operatorname{curl}(\nabla f)=0
$$

If a vector field \vec{F} is conservative, then $\operatorname{curl}(\nabla f)=0$.

$$
\begin{aligned}
& \vec{F}=\nabla f \quad \operatorname{curl}(\nabla f)=\nabla \times(\nabla f)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right| \\
& =\vec{i}\left(f_{z y}-f_{y z}\right)-\vec{j}\left(f_{z x}-f_{x z}\right)+\overrightarrow{0} \\
& =0 \vec{i}+0 \vec{j}+0 \vec{k} \quad \text { by } \quad \text { Clairaut's Theorem. } \\
& \left.=f_{x y}\right)
\end{aligned}
$$

Example 2. Whether or not $\vec{F}(x, y, z)=\left\langle x y z, z^{2}, 2 x y\right\rangle$ is conservative?

$$
\begin{gathered}
\operatorname{Cur}(\vec{F})=\langle 2(x-z), y(x-2),-x z\rangle \neq \overrightarrow{0} \\
\text { So, } \vec{F} \text { is not conservative. }
\end{gathered}
$$

Example 3. Whether or not $\vec{F}(x, y, z)=\left\langle y z, x z, x y+e^{z}\right\rangle$ is conservative?

$$
\begin{aligned}
& \operatorname{cur}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{i} & \vec{k} \\
\frac{3}{x} & \frac{2}{y} & \frac{z}{\partial z} \\
y z & x z & x y t
\end{array}\right| \\
& =\vec{i}(\dot{x}-x)-\vec{j}(y-y)+\vec{k}(z-z) \\
& \text { continuous! } \\
& =\langle 0,0,0\rangle \quad \text { portion. derivative } \\
& \text { So } \vec{F} \text { is conservative. }
\end{aligned}
$$

-From $\xi 16.2 .2$, Sample,$\vec{k} \nabla \nabla$ for $f=x y z+e^{z}+k$

Theorem.

Let \vec{F} be a vector field such that its component functions have continuous partial derivatives and $\operatorname{curl}(\vec{F})=0$ on all \mathbb{R}^{3}, then \vec{F} is conservative.

Example 3. continue. Yes

Example 4. (a) Whether or not $\vec{F}=2 x y^{3} z \vec{i}+3 x^{2} y^{2} z \vec{j}+x^{2} y^{3} \vec{k}$ is conservative? (b) Find a function f such that $\vec{F}=\nabla f$.
(a) $\quad \operatorname{Curl}(\vec{F})=\nabla \times \vec{F}=\left|\begin{array}{ccc}\vec{i}, \vec{j}, \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x y^{2} z 3 x^{2} y^{2} z^{2} x^{2}\end{array}\right|=\vec{i}\left(3 x^{2} y^{2}-3 x^{2} y^{2}\right)-\vec{j}\left(2 x y^{3}-2 x y^{3}\right)+\vec{k}\left(6 x y_{z}^{2}-6 x y^{2} z\right)$

$$
=\langle 0,0,0\rangle
$$

since all paridel denvatives of \vec{F} are continuous, then \vec{F} is conservative.
(b) Find \vec{f} such that $f_{x}=2 x y^{3} z$

$$
\begin{gathered}
f=x^{2} y^{2} z+g(y, z) \Rightarrow\left\{\begin{array}{c}
y_{y}=3 x^{2} y^{2} z+g_{y} \\
\Downarrow \\
f_{z}=x^{2} y^{3}+g_{z} \\
\Downarrow \\
g_{y}=0 \quad g_{z}=x^{2} y^{3} z+k
\end{array} \quad \begin{array}{l}
g_{z}=0
\end{array}\right. \\
J_{z}=x^{2} y
\end{gathered}
$$

2. Divergence.

Definition.

The divergence of a vector field $\vec{F}=\langle P, Q, R\rangle$ is defined by

$$
\operatorname{div} \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Remark: $\operatorname{div} \vec{F}$ is a function from \mathbb{R}^{3} to \mathbb{R}.

Theorem.

The divergence of \vec{F} can be written as dot product

$$
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}
$$

Example 5. Find the divergence of $\vec{F}=x y^{2} \vec{i}-y^{2} z \vec{j}+x e^{z} \vec{k}$.

$$
\begin{aligned}
\operatorname{div} \vec{F}=\nabla \cdot \vec{F} & =\frac{\partial}{\partial x}\left(x y^{2}\right)+\frac{\partial}{\partial y}\left(-y^{2} z\right)+\frac{\partial}{\partial z}\left(x e^{z}\right) \\
& =y^{2}-2 y z+x e^{z}
\end{aligned}
$$

Theorem.

Let \vec{F} be a vector field such that its component functions have continuous partial derivatives on \mathbb{R}^{3}, then

$$
\operatorname{div} \operatorname{curl} \vec{F}=0
$$

Proof.

$$
\operatorname{div}(\operatorname{curl} \vec{F})=\nabla \cdot(\nabla \times \vec{F})=\left|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
D & D & R
\end{array}\right|=\cdots=0
$$

Example 6. Show that $\vec{F}=x y^{2} \vec{i}-y^{2} z \vec{j}+x e^{z} \vec{k}$ can not be the curl of any other vector field.

$$
\text { If } \begin{aligned}
\vec{F} & =\operatorname{curl}(\vec{G}) \text {, then } \operatorname{div}(\vec{F})=\operatorname{div}(\operatorname{arr}(\vec{G})=0 . \\
\operatorname{div}(\vec{F}) & =\frac{\partial}{\partial x}\left(x y^{2}\right)-\frac{\partial}{\partial y}\left(y^{2} z\right)+\frac{\partial}{\partial z}\left(x e^{z}\right) \\
& =y^{2}-2 y z+x e^{z} \\
& \neq 0 \quad \text { so, } \vec{F} \text { is net the carl of any vector fold. } .
\end{aligned}
$$

Remark: 1. Both Divergence and Curl comes from Physics. Look at(Youbube: 3Blue1Brown Divergence and curl: https://www.youtube.com/watch?v=rB83DpBJQsE). It is helpful for intuition, but it can not replace the calculation in this section.

$$
\begin{aligned}
& \text { 2. } \operatorname{div}(\nabla f)=\nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \\
& \nabla^{2}=\nabla \cdot \nabla=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \text { is called Laplace operator. }
\end{aligned}
$$

Equation

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

in Green's Theorem can be written in the vector form

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}(\operatorname{curl} \vec{F}) \cdot \vec{k} d A
$$

Here $\vec{F}=\langle P, Q, 0\rangle$.

$$
\begin{aligned}
& \operatorname{curl}(\vec{F})=(\quad) \vec{i}+\left(\quad \vec{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k} .\right. \\
& \text { so } \operatorname{curl}(\vec{F}) \cdot \vec{k}=0+0+\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} .
\end{aligned}
$$

Another vector form of the Green's theorem:

$$
\oint_{C} \vec{F} \cdot \vec{n} d s=\iint_{D} \operatorname{div} \vec{F} d A
$$

$$
\begin{aligned}
& \xrightarrow{\text { ? }} \\
& \vec{T}=\frac{\vec{r}^{\prime}}{\left|\vec{r}^{\prime}\right|}=\frac{x^{\prime}(t)}{|\vec{r}(t)|} \vec{i}+\frac{y^{\prime}(t)}{|\vec{r}(t)|} \vec{j} \\
& \vec{n}=\frac{y^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} \cdot \vec{i}-\frac{x^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|} \cdot \vec{j} \\
& \oint_{c} \vec{F} \cdot \vec{n} d s=\int_{a}^{b} \vec{F} \cdot \vec{n} \cdot|\vec{r}(t)| d t \\
& =\int_{a}^{b} P(x(t), y(t)) y^{\prime}(t)-Q(x(t), y(t)) x^{\prime}(t) d t \\
& =\int_{C} P d y-Q d x=\iint_{D} \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} d A=\iint_{D} \operatorname{div} \vec{F} d A .
\end{aligned}
$$

