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64.2 Line integrals

1. Line Integral in plane R?

Recall:  §1.6 Suppose a smooth curve C' has the vector equation 7(t) = (z(t),y(t)) for
a<t<h.

If the curve is traversed exactly once as increases from a to b, then its length is

b
L= [ |F'(t)|dt

Definition.

If f(x,y) is function defined on the curve C, then the line integral of f along C'is

[ Fads = i S plainas,
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Theorem. Computation.

The line integral of f(z,y) along curve C' can be evaluated as

[ s = [ o001 (%) + (2 a
o Y - . Y dt dt
Recall: The arc length function s(¢) is the length of the curve between 7(a) and 7(t) defined by

d
f |7 (u)|du = f \/ ’ > du
From the Fundamental Theorem of Calculus, differentiate both sides, we have
ds L, dz dy\”
ar I = \/(dt) +(E)

Example 1. Evaluate / (3—xy?)ds, where C is the first quadrant of the unit circle 22 +72 = 1.
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Let p(x,y) be the density function on a curve (wire) C. Then the mass of the wire C is

m = lim ) p(xfayf)ﬁsiz//}(%y)ds
n—oo
i=1 ¢
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The center of mass is (z,y) computed by

) 1
xz—/:vp:ry yza/yp(fv,y)ds
C

Suppose C' is a piecewise-smooth curve.
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Example 2. Evaluate

c
(1,1) followed by the line segment C5 from (1,1) to (2,1).
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2xds, where C' is the arc C of the parabola y = x? from (0,0) to
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Definition.

The line integral of f along C' with respect to x is

flz,y)dxr = lim flal, yh) Az,
[ 1w Jim 3 )
The line integral of f along C' with respect to y is

/Cf(l’,y)dy = T}g{}oz f(@?, y7) Ay
i=1

Suppose a smooth curve C' has the vector equation 7(t) = (z(t),y(t)) for a <t < b. The line
integral of f along C' with respect to x and y can be evaluated as

Theorem.

/C f () = / F(at). y() (1)t

b
/ f(z,y)dy = / Fla(t), y(0)y (£)dt
C a

/ f(z,y)ds will be called the line integral of f along C' with respect to arc length.
c

Notation:

/Cf(w,y)dx+g(x,y)dy :Z/Cf($7y)dx+/cg(wjy)dy

Example 3. Evaluate / y*dx — 2xdy, where C' is the line segment from (—4, —2) to (1,2).
c
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Example 4. Evaluate /

y*dx, where C' is the arc of the parabola z = 2 — 2 from (1, —1) to
c
(—2,2).

r=2—t, y=tand -1 <t <2

jcglou = fl & oA dt
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2. Line integral in space R3.

Suppose a smooth curve C' has the vector equation 7(t) = (x(t),y(t), z(t)) for a <t <b.

Definition.

The line integral of f along C' with respect to the arc length is
/ f(z,y,2)ds = lim Zf(ﬁ,y;‘,z;‘)Asi

The line integral of f along C' with respect to z is

fo,y,ZdZ: lim fx;kaijzz* Azi
[ 1w Jim 3 a2

Theorem.

The line integral of f along C' with respect to the arc length can be evaluated as

[ fwaas= [ " Fat) (e, z<t>>\/ (sz—t) ‘ (j—i) ' (%)th

The line integral of f along C' with respect to z can be evaluated as

/C f(y, 2)dz = / Fa(t), y(t), (1) (1)t
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Example 5. Evaluate / 2z sin z ds, where C'is the helix defined by x = sint, y = cost, z =t
c
for 0 <t <.
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Example 6. Evaluate / ydx + zdy + xdz, where C' is the union of the line segment C; from
c
(3,4,0) to (3,4,5) and the line segment Cy from (3,4,5) to (2,0,0).
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3. Line Integrals of Vector Fields.

Recall Calculus 1. The work done by a force function f(x) in moving a particle from a to b

along z-axis is
b
W = / f(z)dz

H1

I a b }{

Recall §1 The work done by a constant force F along displacement vector D is given by

W=F-D

Question: How to calculate the work done by a force function F (z,y,z) moving a particle
along a curve C?

AEF = unit tangent Vet

F |z | |
" 20 FOe .42 2) - [AS T(t)]
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Definition.

Let F be a vector field (on R? or R?) defined on a curve C' (7(t), a < ¢t < b). Then the
line integral of F' along C' is

/Cﬁ-fds:/abﬁ(f(t))-f'(t)dt:/ﬁ-df

C

where T is the unit tangent vector at the point (z,y,2) € C.

Teg= A ds= || dt

=~ ﬁ@%&) HR) 4o +R) 2 dt.
FfCPo(x+Qo(g+ prgj
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Example 7. Find the work done by a force field F (x,y) =
(sint,cost), when 0 <t < 7/2.

the curve C given by 7(t) =

L]? dr = f(g,-xg)- ¥l dt
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(y?, —xy) moving a particle along
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Example 8. Evaluate / F-dF, where ﬁ(x, y,2) = {xy,yz, zz) and C'is given by x = t, y = 2,
c
z=t3for 0 <t < 1.

Lf.w :J' P, P dt
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