§4.2 Line integrals

1. Line Integral in plane \mathbb{R}^{2}

Recall: §1.6 Suppose a smooth curve C has the vector equation $\vec{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$.

If the curve is traversed exactly once as increases from a to b, then its length is

$$
\begin{aligned}
L & =\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

Definition.

If $f(x, y)$ is function defined on the curve C, then the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}
$$

Theorem. Computation.

The line integral of $f(x, y)$ along curve C can be evaluated as

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Recall: The arc length function $s(t)$ is the length of the curve between $\vec{r}(a)$ and $\vec{r}(t)$ defined by $s(t)=\int_{a}^{t}\left|\vec{r}^{\prime}(u)\right| d u=\int_{a}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}} d u$
From the Fundamental Theorem of Calculus, differentiate both sides, we have

$$
\frac{d s}{d t}=\left|\vec{r}^{\prime}(t)\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Example 1. Evaluate $\int_{C}\left(3-x y^{2}\right) d s$, where C is the first quadrant of the unit circle $x^{2}+y^{2}=1$.

$$
\begin{aligned}
\int_{C} 3-x y^{2} d s & =\int_{0}^{\frac{\pi}{2}}\left[3-(\cos t)\left(\sin ^{2} t\right)\right] \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int_{0}^{\frac{\pi}{2}}\left(3-\sin ^{2} t \cos t\right) d t \\
& =3 t-\left.\frac{\sin ^{3} t}{3}\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{3 \pi}{2}-\frac{1}{3}
\end{aligned}
$$

Let $\rho(x, y)$ be the density function on a curve (wire) C. Then the mass of the wire C is

$$
m=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i}=\int_{C} \rho(x, y) d s
$$

The center of mass is (\bar{x}, \bar{y}) computed by

$$
\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \quad \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s
$$

Suppose C is a piecewise-smooth curve.

Then,

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Example 2. Evaluate $\int_{C} 2 x d s$, where C is the arc C_{1} of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ followed by the line segment C_{2} from $(1,1)$ to $(2,1)$.

$$
\int_{C} 2 x d s=\int_{C_{1}} 2 x d s+\int_{C_{2}} 2 x d s .
$$

(1.)

$$
\begin{aligned}
C_{1} \begin{array}{l}
x=t \\
y=t^{2} \\
0 \leqslant t \leqslant 1
\end{array} \quad \int_{C_{1}} 2 x d s & =\int_{0}^{1} 2 t \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int_{0}^{1} 2 t \sqrt{1+(2 t)^{2}} d t \\
& =\int_{0}^{1}\left(1+4 t^{2}\right)^{\frac{1}{2}} d t^{2} \\
& =\left.\frac{1}{4} \cdot \frac{2}{3}\left(1+4 t^{2}\right)^{\frac{3}{2}}\right|_{0} ^{1}=\frac{5 \sqrt{5}-1}{6}
\end{aligned}
$$

(2.) $C_{2}, \begin{aligned} & x=t \\ & y=1\end{aligned}$

$$
\begin{aligned}
\int_{C_{2}} 2 x d s & =\int_{1}^{2} 2 t \sqrt{1^{2}+0} d t \\
& =\left.t^{2}\right|_{1} ^{2}=4-1=3
\end{aligned}
$$

So, $\quad \int_{C} 2 x d s=\frac{5 \sqrt{5}-1}{6}+3$

Definition.

The line integral of f along C with respect to x is

$$
\int_{C} f(x, y) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i}
$$

The line integral of f along C with respect to y is

$$
\int_{C} f(x, y) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta y_{i}
$$

Suppose a smooth curve C has the vector equation $\vec{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$. The line integral of f along C with respect to x and y can be evaluated as

Theorem.

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

$\int_{C} f(x, y) d s$ will be called the line integral of f along C with respect to arc length.

Notation:

$$
\int_{C} f(x, y) d x+g(x, y) d y:=\int_{C} f(x, y) d x+\int_{C} g(x, y) d y
$$

Example 3. Evaluate $\int_{C} y^{2} d x-2 x d y$, where C is the line segment from $(-4,-2)$ to $(1,2)$.

position vector $\vec{r}_{0}=\langle-4,-2\rangle$
direction vector $\vec{V}=\overrightarrow{P Q}=\langle 5,4\rangle$
Line Segment C :

$$
\int_{C} y^{2} d x-2 x d y=\int_{0}^{1}(-2+4 t)^{2} 5 d t-2(-4+5 t) \cdot 4 d t
$$

$$
=\int_{0}^{1} 5\left(16 t^{2}-24 t+4\right)+32 d t
$$

$$
=5\left(\frac{16}{3} t^{3}-12 t^{2}+4 t\right)+\left.32 t\right|_{0} ^{1}
$$

$$
=\frac{56}{3}
$$

Example 4. Evaluate $\int_{C} y^{2} d x$, where C is the arc of the parabola $x=2-y^{2}$ from $(1,-1)$ to $(-2,2)$.
$x=2-t^{2}, y=t$ and $-1 \leq t \leq 2$.

$$
\begin{aligned}
\int_{C} y^{2} d x & =\int_{-1}^{2} t^{2} x^{\prime}(t) d t \\
& =\int_{-1}^{2} t^{2}(-2 t) d t \\
& =\int_{-1}^{2}-2 t^{3} d t \\
& =-\left.\frac{t^{4}}{4}\right|_{-1} ^{2} \\
& =-\frac{15}{2}
\end{aligned}
$$

$$
\frac{x=2-y^{2}+y}{(-2,2)} C \quad=\int_{-1}^{2}-2 t^{3} d t
$$

$$
\begin{aligned}
& \vec{r}(t)=\vec{r}_{0}+t \vec{v}=\langle-4,-2\rangle+t\langle 5,4\rangle \\
& x=-4+5 t \quad d x=5 d t \\
& y=-2+4 t \quad 0 \leqslant t \leqslant 1 \\
& d y=4 d t
\end{aligned}
$$

2. Line integral in space \mathbb{R}^{3}.

Suppose a smooth curve C has the vector equation $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$.

Definition.

The line integral of f along C with respect to the arc length is

$$
\int_{C} f(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta s_{i}
$$

The line integral of f along C with respect to z is

$$
\int_{C} f(x, y, z) d z=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \Delta z_{i}
$$

Theorem.

The line integral of f along C with respect to the arc length can be evaluated as

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

The line integral of f along C with respect to z can be evaluated as

$$
\int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
$$

Example 5. Evaluate $\int_{C} 2 x \sin z d s$, where C is the helix defined by $x=\sin t, y=\cos t, z=t$ for $0 \leq t \leq \pi$.

$$
\begin{aligned}
& \int_{c} 2 x \sin z d s \\
= & \int_{0}^{\pi} 2 \sin t \sin t \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \\
= & \int_{0}^{\pi} 2 \sin ^{2} t \sqrt{\cos ^{2} t+\sin ^{2} t+1} d t \\
= & \sqrt{2} \int_{0}^{\pi} 1-\cos 2 t d t \\
= & \left.\sqrt{2}\left(t-\frac{1}{2} \sin 2 t\right)\right|_{0} ^{\pi} \\
= & \sqrt{2} \pi
\end{aligned}
$$

Example 6. Evaluate $\int_{C} y d x+z d y+x d z$, where C is the union of the line segment C_{1} from $(3,4,0)$ to $(3,4,5)$ and the line segment C_{2} from $(3,4,5)$ to $(2,0,0)$.

$$
\left.\begin{array}{l}
\text { For } C_{1}: \begin{array}{rl}
\vec{r}(t) & =\langle 3,4,0\rangle+t\langle 0,0,5\rangle \\
x=3 \quad y=4 \quad z=5 t \quad 0 \leqslant t \leqslant 1
\end{array} \\
\begin{array}{rl}
\int_{C_{1}} y d x+z d y+x d z & =\int_{0}^{1} 4(0)+5 t(0)+3(5) d t \\
& =15
\end{array} \\
\begin{array}{rl}
\text { For } C_{2}: \quad C_{2} \\
\left.\int_{C_{2}} y d x+z\right) & =\langle 3,4,5\rangle+t\langle-1,-4,-5\rangle
\end{array} \\
x=3-t \quad y
\end{array}\right)
$$

3. Line Integrals of Vector Fields.

Recall Calculus 1. The work done by a force function $f(x)$ in moving a particle from a to b along x-axis is

$$
W=\int_{a}^{b} f(x) d x
$$

Recall $\S 1$ The work done by a constant force \vec{F} along displacement vector \vec{D} is given by

$$
W=\vec{F} \cdot \vec{D}
$$

Question: How to calculate the work done by a force function $\vec{F}(x, y, z)$ moving a particle along a curve C ?

x

$$
W=\int_{C} \vec{F} \cdot \vec{T} d s
$$

Definition.
Let \vec{F} be a vector field (on \mathbb{R}^{2} or \mathbb{R}^{3}) defined on a curve $C(\vec{r}(t), a \leq t \leq b)$. Then the line integral of \vec{F} along C is

$$
\int_{C} \vec{F} \cdot \vec{T} d s=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{C} \vec{F} \cdot d \vec{r}
$$

where \vec{T} is the unit tangent vector at the point $(x, y, z) \in C$.

$$
\begin{aligned}
& \vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} \quad d S=\left|r^{\prime}(t)\right| d t \\
& \begin{aligned}
\int_{C} \vec{F} \cdot \vec{T} d s & =\int_{C} \vec{F} \cdot \frac{\vec{r}^{\prime}(t)}{\mid \vec{r}^{\prime}(t)} \cdot\left|r^{\prime}(t)\right| d t \\
& =\int_{C} \vec{F} \cdot \vec{r}^{\prime}(t) d t
\end{aligned}
\end{aligned}
$$

- If $\vec{F}=\langle\vec{P}, \vec{Q}, \vec{R}\rangle, \vec{r}(t)=\langle x(t), y(t), z(t)\rangle$
then $\int_{C} \vec{F} \cdot \vec{T} d s=\int_{a}^{b} \vec{F} \cdot \vec{r}^{\prime}(t) d t$
$=\int_{a}^{b}(\vec{p})^{\prime}(t)+(\vec{Q}) \cdot y^{\prime}(t)+(\vec{R}) z^{\prime}(t) d t$.

$$
=\int_{C} P d x+Q d y+R d z
$$

Example 7. Find the work done by a force field $\vec{F}(x, y)=\left\langle y^{2},-x y\right\rangle$ moving a particle along the curve C given by $\vec{r}(t)=\langle\sin t, \cos t\rangle$, when $0 \leq t \leq \pi / 2$.

$$
\begin{aligned}
\int_{C} \vec{F} d \vec{r} & =\int_{0}^{\frac{\pi}{2}}\left\langle y^{2},-x y\right\rangle \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{\frac{\pi}{2}}\left\langle\cos ^{2} t,-\sin t \cos t\right\rangle \cdot\langle\cos t,-\sin t\rangle d t \\
& =\int_{0}^{\frac{\pi}{2}} \cos ^{3} t+\sin ^{2} t \cos t d t \\
& =\int_{0}^{\frac{\pi}{2}} \cos t d t \\
& =1
\end{aligned}
$$

Example 8. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=\langle x y, y z, z x\rangle$ and C is given by $x=t, y=t^{2}$, $z=t^{3}$ for $0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{1} \vec{F} \cdot \vec{r}^{\prime}(t) \cdot d t \\
& =\int_{0}^{1}\left\langle t^{3}, t^{5}, t^{4}\right\rangle \cdot\left\langle 1,2 t, 3 t^{2}\right\rangle d t \\
& =\int_{0}^{1} t^{3}+5 t^{6} d t \\
& =\frac{t^{4}}{4}+\left.\frac{5 t^{7}}{7}\right|_{0} ^{1} \\
& =\frac{27}{28}
\end{aligned}
$$

