$\S4.1$ Vector Fields

Recall:

Definition.

The **gradient** of a function f(x, y) is the vector function ∇f by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \ \vec{i} + \frac{\partial f}{\partial y} \ \vec{j}$$

The **gradient** of a function f(x, y, z) is the vector function ∇f by

$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$$

Example 1. Find the gradient of $f(x, y) = \sin(xy) + e^y$.

$$\nabla f = \langle f_x, f_y \rangle = \langle y \cos(xy), x \cos(xy) + e^y \rangle$$

Example 2. Find the gradient of f(x, y, z) = xyz.

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle yz, xz, xy \rangle$$

Definition.

A vector field on $D \subset \mathbb{R}^2$ is a vector function $\vec{F}(x, y)$ that assigns to each point $(x, y) \in D$ a two-dimensional vector $\vec{F}(x, y)$.

Example 3.

$$\vec{F}(x,y) = \langle 1,0\rangle \qquad \qquad \vec{G}(x,y) = \langle 0,-1\rangle.$$

Example 4.
$$\vec{F}(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$$

Example 5. $\vec{G}(x,y) = -y \cdot \vec{i} + x \cdot \vec{j}$

Definition.

A vector field on $E \subset \mathbb{R}^3$ is a function $\vec{F}(x, y, z)$ that assigns to each point $(x, y, z) \in E$ a three-dimensional vector $\vec{F}(x, y, z)$. Similar definition works for \mathbb{R}^3 and \mathbb{R}^n .

Example 6. Sketch the vector field on \mathbb{R}^3 given by $\vec{F}(x, y, z) = \langle 0, 0, z \rangle$.

Gradient vector fields

Definition.

A vector field \vec{F} is called a **conservative vector field** if it is the gradient of some function f, that is, $\vec{F} = \nabla f$.

f is called a **potential function** for \vec{F} .

Example 7. Find the gradient vector field of $f(x, y) = y^2 x - x^3$.

 $\nabla f = \langle f_x, f_y \rangle = \langle y^2 - 3x^2, 2xy \rangle$

Example 8. $\vec{F} = \langle x^2 - y^2 - 4, 2xy \rangle$

Example 9. $\vec{F} = \langle \frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2} \rangle$

Example 10. (Gravitational Field) Let $\vec{x} = \langle x, y, z \rangle \in \mathbb{R}^3$. The gravitational force acting on the object at \vec{x} is

$$\vec{F}(\vec{x}) = -\frac{mMG}{|\vec{x}|^3}\vec{x}$$

m and M are masses of the two objects. $G=6.67408\times 10^{-11}$ is the universal Gravitational constant.

Example 11. (Electric Field) Electric Force exerted by an electric charge Q at an point $\vec{x} = (x, y, z)$ is $\vec{F}(\vec{x}) = \frac{\epsilon q Q}{|\vec{x}|^3} \vec{x}$

Example 12. Magnetic Field

