$\S 4.1$ Vector Fields

Recall:

Definition.

The gradient of a function $f(x, y)$ is the vector function ∇f by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}
$$

The gradient of a function $f(x, y, z)$ is the vector function ∇f by

$$
\nabla f(x, y, z)=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}+\frac{\partial f}{\partial z} \vec{k}
$$

Example 1. Find the gradient of $f(x, y)=\sin (x y)+e^{y}$.

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle y \cos (x y), x \cos (x y)+e^{y}\right\rangle
$$

Example 2. Find the gradient of $f(x, y, z)=x y z$.

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\langle y z, x z, x y\rangle
$$

Definition.

A vector field on $D \subset \mathbb{R}^{2}$ is a vector function $\vec{F}(x, y)$ that assigns to each point $(x, y) \in$ D a two-dimensional vector $\vec{F}(x, y)$.

Example 3.

$$
\vec{F}(x, y)=\langle 1,0\rangle
$$

$$
\vec{G}(x, y)=\langle 0,-1\rangle .
$$

Example 4. $\vec{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$

$$
\vec{F}(x, y)=\nabla\left(\frac{1}{2} \sqrt{x^{2}+y^{2}}\right)
$$

Example 5. $\vec{G}(x, y)=-y \cdot \vec{i}+x \cdot \vec{j}$

Definition.

A vector field on $E \subset \mathbb{R}^{3}$ is a function $\vec{F}(x, y, z)$ that assigns to each point $(x, y, z) \in E$ a three-dimensional vector $\vec{F}(x, y, z)$.
Similar definition works for \mathbb{R}^{3} and \mathbb{R}^{n}.
Example 6. Sketch the vector field on \mathbb{R}^{3} given by $\vec{F}(x, y, z)=\langle 0,0, z\rangle$.

Gradient vector fields

Definition.

A vector field \vec{F} is called a conservative vector field if it is the gradient of some function f, that is, $\vec{F}=\nabla f$. f is called a potential function for \vec{F}.

Example 7. Find the gradient vector field of $f(x, y)=y^{2} x-x^{3}$.

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle y^{2}-3 x^{2}, 2 x y\right\rangle
$$

Example 8. $\vec{F}=\left\langle x^{2}-y^{2}-4,2 x y\right\rangle$

Example 9. $\vec{F}=\left\langle\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right\rangle$

Example 10. (Gravitational Field) Let $\vec{x}=\langle x, y, z\rangle \in \mathbb{R}^{3}$. The gravitational force acting on the object at \vec{x} is

$$
\vec{F}(\vec{x})=-\frac{m M G}{|\vec{x}|^{3}} \vec{x}
$$

m and M are masses of the two objects. $G=6.67408 \times 10^{-11}$ is the universal Gravitational constant.

Example 11. (Electric Field) Electric Force exerted by an electric charge Q at an point $\vec{x}=(x, y, z)$ is $\vec{F}(\vec{x})=\frac{\epsilon q Q}{|\vec{x}|^{3}} \vec{x}$

Example 12. Magnetic Field

