§3.3 Polar coordinates

1. Polar Coordinates System for \mathbb{R}^{2}

For each point in \mathbb{R}^{2}, usually we use $x y$-Cartesian coordinates. However, sometimes, it is more convenient to use Polar Coordinates System.

Each point P is describe by an ordered pare (r, θ), where r is distance from the origin O to P, and θ is the angle (usually measured in radians) between the polar axis and $O P$.

Examples

Example 1.

(1) Equation $x^{2}+y^{2}=25$ is equivalent to $r=5$
(2) Equation $(x-2)^{2}+y^{2}=4$ is equivalent to

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}=4 \\
& \frac{x^{2}+y^{2}-4 x=0}{r^{2}-4 r \cos \theta=0} \\
& r(r-4 \cos \theta)=0
\end{aligned} \quad r=0 \text { or } r=4 \cos \theta
$$

The region of a polar rectangle

$$
R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}
$$

Example 2. $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ and $R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4, y \geq 0\right\}$

$R=\{(r, \theta) \mid 0 \leqslant r \leqslant 1,0 \leqslant \theta \leqslant 2 \pi\}$
$R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

$R=\{(0, \theta) \mid 1 \leqslant r \leqslant 2, \quad 0 \leq \theta \leq \pi\}$
$R=\left\{(x, y) \left\lvert\, \begin{array}{l}x^{2}+y^{2} \leqslant 4 \\ \\ x^{2}+y^{2} \geqslant 1\end{array} \quad y \geqslant 0\right.\right\}$

2. Double integrals in polar form.

$\pi r^{2} \cdot\left(\frac{\Delta \theta}{2 \pi}\right)=$ Area $=\frac{1}{2} r^{2} \Delta \theta$

$$
d A=r d r d \theta
$$

Change to Polar Coordinates in Double Integral:

Theorem.

If the polar region R is given by $0 \leq a \leq r \leq b$ and $\alpha \leq \theta \leq \beta$ for $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 3. Change the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} 4 d y d x$ into polar integral.

$$
\begin{aligned}
& \int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} 4 d y d x=\int_{0}^{\pi} \int_{0}^{1} 4 r d r d \theta \\
& =\left.\int_{0}^{\pi} 2 r^{2}\right|_{0} ^{1} d \theta \\
& =\int_{0}^{\pi} 2 d \theta=\left.2 \theta\right|_{0} ^{\pi}=2 \pi
\end{aligned}
$$

Example 4. Express the double integral $\iint_{R} f(x, y) d y d x$ into polar integral. Here R is given by $R=\left\{(x, y) \mid(x-2)^{2}+y^{2} \leq 4\right\}$.

$$
\begin{aligned}
& \iint_{R} f(x, y) d A=\iint_{R_{1}} f(x y) d A+\iint_{R_{2}} f(x, y) d A \text {. } \\
& =\int_{0}^{\frac{1}{2} \pi} \int_{0}^{4 \cos \theta} f(r \cos \theta, r \sin \theta) r d r d \theta \\
& +\int_{\frac{3 \pi}{2}}^{2 \pi} \int_{0}^{4 \cos \theta} f(r \cos \theta, r \sin \theta) r d r d \theta \\
& x^{2}+y^{2}-4 x \leq 0 \\
& r^{2}-4 r \cos \theta \leqslant 0 \\
& r(r-4 \cos \theta) \leqslant 0 \\
& 0 \leqslant r \leqslant 4 \cos \theta \\
& 0 \leqslant \theta \leq \frac{\pi}{2} \\
& \text { and } \frac{3 \pi}{2} \leqslant \theta \leqslant 2 \pi
\end{aligned}
$$

Example 5. Evaluate $\iint_{R} \cos \left(x^{2}+y^{2}\right) d A$ where R is the region between $r=3$ and $r=4$ in the upper half plane $y \geq 0$.

$$
\begin{aligned}
& \iint_{R} \cos \left(x^{2}+y^{2}\right) d A \\
= & \int_{0}^{\pi} \int_{3}^{4}\left(\cos \gamma^{2}\right) \cdot r d r d \theta \\
= & \int_{0}^{\pi} \frac{1}{2}(\sin 16-\sin 9) d \theta \\
= & \left.\frac{1}{2}(\sin 16-\sin 9) \theta\right|_{0} ^{\pi} \\
= & \frac{1}{2}(\sin 16-\sin 9) \pi
\end{aligned}
$$

$$
3 \leqslant r \leqslant 4
$$

$$
\leftrightarrow \quad 0 \leqslant \theta \leqslant \pi
$$

$$
\begin{array}{rl}
\int_{3}^{4}\left(\cos r^{2}\right) r d r & u=r^{2} \\
=\left.\frac{1}{2} \sin r^{2}\right|_{3} ^{4} & d u=2 r d r \\
=\frac{1}{2}(\sin 16-\sin 9) & \int\left(\cos r^{2}\right) r d r \\
= & \int(\cos u) \frac{1}{2} d u \\
= & \frac{1}{2} \sin u \\
= & \frac{1}{2} \sin r^{2}
\end{array}
$$

Example 6. Evaluate $\iint_{R} 4 x^{2}+3 y d A$ where R is the region in the 2 ed quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=3$.

$$
\begin{aligned}
& \iint_{R} 4 x^{2}+3 y d A \\
& =\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{\sqrt{3}}\left(4 r^{2} \cos ^{2} \theta+3 r \sin \theta\right) r d r d \theta \\
& =\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{\sqrt{3}} 4 r^{3} \cos ^{2} \theta+3 r^{2} \sin \theta d r d \theta \text {. } \\
& =\int_{\frac{\pi}{2}}^{\pi} r^{4} \cos ^{2} \theta+r^{3} \sin \theta| |_{1}^{\sqrt{3}} d \theta \\
& \int_{\frac{2}{2}}^{2 \pi} 8 \cos ^{2} \theta+(3,3-1) \sin \theta d \theta \\
& =\int_{\frac{\pi}{2}}^{\pi} 4(\cos 2 \theta+1)+(3 \sqrt{3}-1) \sin \theta d \theta \\
& =2 \sin 2 \theta+4 \theta-\left.(3 \sqrt{3}-1) \cos \theta\right|_{\frac{\pi}{2}} ^{\pi} \\
& =4 \pi+(3 \sqrt{3}-1)-2 \pi \\
& =2 \pi+(3 \sqrt{3}-1)
\end{aligned}
$$

Example 7. Use polar coordinates to find the volume of the given solid below the paraboloid $z=6-2 x^{2}-2 y^{2}$ and above the first quadrant of the $x y$-plane.

To find the region R,

$$
V=\iint_{R} 6-2 x^{2}-2 y^{2} d A
$$ set $z=0$.

$$
=2 \iint_{R} 3-\left(x^{2}+y^{2}\right) d A
$$

$$
=2 \int_{0}^{\pi / 2} \int_{0}^{\sqrt{3}}\left(3-r^{2}\right) r d r d \theta
$$

$$
=2 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{3}} 3 r-r^{3} d r d \theta
$$

$$
=2 \int_{0}^{\frac{\pi}{2}} \frac{3 r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{0} ^{\sqrt{3}} d \theta
$$

$$
\Rightarrow 2 \int_{0}^{\pi / 2} \frac{9}{2}-\frac{9}{4} d \theta
$$

$$
=2 \int_{0}^{\pi / 2} \frac{9}{4} d \theta
$$

$$
=\left.2\left(\frac{9}{4} \theta\right)\right|_{0} ^{\pi / 2}=\frac{9}{2} \cdot \frac{\pi}{2}=\frac{9 \pi}{4}
$$

Example 8. Find the volume of the given solid. Enclosed by the paraboloid $z=2 x^{2}+y^{2}$ and the planes $x=0, y=4, y=2 x, z=0$

$$
\begin{aligned}
V & =\iint_{R} 2 x^{2}+y^{2} d A \\
& =\int_{0}^{2} \int_{2 x}^{4} 2 x^{2}+y^{2} d y d x \\
& =\int_{0}^{2} 2 x^{2} y+\left.\frac{y^{3}}{3}\right|_{2 x} ^{4} d x \\
& =\int_{0}^{2} 8 x^{2}+\frac{64}{3}-\frac{4}{3} x^{3} d ;=\frac{8 x^{3}}{3}+\frac{64}{3} x-\left.\frac{x^{4}}{3}\right|_{0} ^{2}=\frac{176}{3}
\end{aligned}
$$

Example 9. Use polar coordinates to find the volume of the given solid. Inside the sphere $x^{2}+y^{2}+z^{2}=25$ and outside the cylinder $x^{2}+y^{2}=9$

We alculte the top half volume then times 2. $\left(V=2 V_{\text {top }}\right)$

$$
\begin{aligned}
V_{\text {top }} & =\iint_{R} \sqrt{25-\left(x^{2}+y^{2}\right)} d A \\
& =\int_{0}^{2 \pi} \int_{3}^{5} \sqrt{25-r^{2}} \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{3}^{5} \cdot\left(25-r^{2}\right)^{\frac{1}{2}} \frac{1}{2} d r^{2} d \theta \\
& =\int_{0}^{2 \pi}-\left.\frac{\left(25-r^{2}\right)^{\frac{3}{2}}}{3 / 2} \cdot \frac{1}{2}\right|_{3} ^{5} d \theta \\
& =\int_{0}^{2 \pi} \frac{64}{3} d \theta=\frac{64}{3} \cdot 2 \pi
\end{aligned}
$$

on $x y$-plane $z=0$

