§3.3 Polar coordinates

1. Polar Coordinates System for \mathbb{R}^2

For each point in \mathbb{R}^2 , usually we use *xy*-Cartesian coordinates. However, sometimes, it is more convenient to use Polar Coordinates System.

Each point P is describe by an ordered pare (r, θ) , where r is distance from the origin O to P, and θ is the angle (usually measured in radians) between the polar axis and OP.

Examples

Using trigonometric formulas, relation between the (x, y)-Cartesian coordinates, and the (r, θ) -Polar Coordinates are related by

 $r^2 = x^2 + y^2$ $x = r\cos\theta$ $y = r\sin\theta$

Example 1.

- (1) Equation $x^2 + y^2 = 25$ is equivalent to r = 5
- (2) Equation $(x-2)^2 + y^2 = 4$ is equivalent to

 $\chi^{2}-4x+4+y^{2}=4$ $\chi^{2}+y^{2}-4x=0 \qquad r=0 \quad \text{or} \quad r=4\cos\theta$ $\gamma^{2}-4r\cos\theta=0$ $r(\gamma-4\cos\theta)=0$

Example 2. $R = \{(x, y) | x^2 + y^2 \le 1\}$ and $R = \{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge 0\}$

2. Double integrals in polar form.

Change to Polar Coordinates in Double Integral:

Theorem.

If the polar region R is given by $0 \le a \le r \le b$ and $\alpha \le \theta \le \beta$ for $0 \le \beta - \alpha \le 2\pi$, then

$$\iint_{R} f(x,y) \ dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) \ r \ drd\theta$$

Example 3. Change the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} 4 \, dy dx$ into polar integral.

Example 4. Express the double integral $\iint_R f(x, y) \, dy dx$ into polar integral. Here R is given by $R = \{(x, y) \mid (x - 2)^2 + y^2 \le 4\}.$

$$\int \int f(x, y) dx = \int \int f(xy) dx + \int \int f(xy) dx.$$

$$R = \int \frac{1}{2}\pi \int \frac{4\cos\theta}{2} f(r\cos\theta, r\sin\theta) \mathbf{r} dr d\theta$$

$$r(r - 4\cos\theta) \leq 0$$

Example 5. Evaluate $\iint_R \cos(x^2 + y^2) dA$ where R is the region between r = 3 and r = 4 in the upper half plane $y \ge 0$.

Example 6. Evaluate $\iint_R 4x^2 + 3ydA$ where R is the region in the 2ed quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 3$.

$$\int_{R} 4x^{2} + 3y \, dA$$

$$= \int_{\frac{\pi}{2}}^{\pi} \int_{1}^{\sqrt{3}} (4r^{2}\cos^{2}\theta + 3rsh\theta)r \, dr \, d\theta$$

$$= \int_{\frac{\pi}{2}}^{\pi} \int_{1}^{\sqrt{3}} (4r^{2}\cos^{2}\theta + 3rsh\theta)r \, dr \, d\theta$$

$$= \int_{\frac{\pi}{2}}^{\pi} \int_{1}^{\sqrt{5}} 4y^{3}\cos^{2}\theta + 3r^{2}sh\theta \, dr \, d\theta$$

$$= \int_{\frac{\pi}{2}}^{\pi} r^{4}\cos^{2}\theta + r^{3}\sin\theta \Big|_{1}^{\sqrt{5}} \, d\theta$$

$$= \int_{\frac{\pi}{2}}^{\pi} 8\cos^{3}\theta + (3\overline{B} - 1)sh\theta \, d\theta$$

$$= 2\sin^{2}\theta + 4\theta - (2\overline{B} - 1)\cosh\theta \Big|_{\frac{\pi}{2}}^{70}$$

$$= 4\pi + (3\sqrt{B} - 1) - 2\pi$$

$$= 2\pi + (3\sqrt{B} - 1)$$

Example 7. Use polar coordinates to find the volume of the given solid below the paraboloid $z = 6 - 2x^2 - 2y^2$ and above the first quadrant of the *xy*-plane.

Example 8. Find the volume of the given solid. Enclosed by the paraboloid $z = 2x^2 + y^2$ and the planes x = 0, y = 4, y = 2x, z = 0

Example 9. Use polar coordinates to find the volume of the given solid. Inside the sphere $x^2 + y^2 + z^2 = 25$ and outside the cylinder $x^2 + y^2 = 9$

