§3.11 Surface and Area

Let S be a surface with a vector equation $\vec{r}=\vec{r}(u, v)=\left\langle r_{1}, r_{2}, r_{3}\right\rangle$ from \mathbb{R}^{2} to \mathbb{R}^{3}.
The area of S on domain D is

$$
A(S)=\lim _{\Delta A \rightarrow 0} \sum_{i, j} \Delta T_{i j}
$$

where $\Delta T_{i j}$ is the area of the tangent plane on $\Delta A_{i j}$.

At each point on the surface, there are two tangent vectors \vec{r}_{u} and \vec{r}_{v}. The area is

$$
\Delta T_{i j}=\left|\vec{r}_{u} d u \times \vec{r}_{v} d v\right|=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

Theorem.

The area of the surface S can be computed by

$$
A(S)=\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
$$

Example 1. Find the area of the surface S with parametric equation $\vec{r}=\left\langle u \cos v, u \sin v, u^{2} \sin (2 v)\right\rangle$ where $0 \leq u \leq \sqrt{2}$ and $0 \leq v \leq 2 \pi$.
$\vec{r}_{u}=\langle\cos v, \sin v, 2 u \sin (2 v)\rangle$ and $\vec{r}_{v}=\left\langle-u \sin v, u \cos v, 2 u^{2} \cos (2 v)\right\rangle$

$$
\vec{r}_{u} \times \vec{r}_{v}=\left|\begin{array}{ccc}
i & j & k \\
\cos v & \sin v & 2 u \sin (2 v) \\
-u \sin v & u \cos v & 2 u^{2} \cos (2 v)
\end{array}\right|=\left\langle 2 u^{2}(-\sin v),-2 u^{2} \cos v, u\right\rangle
$$

So, $\left|\vec{r}_{u} \times \vec{r}_{v}\right|=\sqrt{4 u^{4}+u^{2}}=u \sqrt{4 u^{2}+1}$.
Hence

$$
A(S)=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} u \sqrt{4 u^{2}+1} d u d v=\ldots=\frac{32 \pi}{3}
$$

Let S be a surface with equation $z=f(x, y)$.

Theorem.

The area of the surface S can be computed by

$$
A(S)=\iint_{D} \sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d A
$$

Reason: A parametrization of the surface is $\vec{r}(x, y)=\langle x, y, f(x, y)\rangle$. So, $\vec{r}_{x}=\left\langle 1,0, f_{x}\right\rangle$ and $\vec{r}_{y}=\left\langle 0,1, f_{y}\right\rangle$. Hence computations the cross product $\vec{r}_{x} \times \vec{r}_{y}=\left\langle-f_{x},-f_{y}, 1\right\rangle$. We relate $\Delta T_{i j}$ and $\Delta A_{i j}$ by

$$
\Delta T_{i j}=\sqrt{\left[f_{x}\left(x_{i}, y_{i}\right)\right]^{2}+\left[f_{y}\left(x_{i}, y_{i}\right)\right]^{2}+1} \Delta A
$$

Example 2. Find the area of the plane $z=8+2 x+5 y$ that lies above the rectangle $[0,3] \times[1,6]$.

Denote $f(x, y)=8+2 x+5 y$. Then $f_{x}=2$ and $f_{y}=5$.

$$
\begin{aligned}
A(s) & =\int_{0}^{3} \int_{1}^{6} \sqrt{4+25+1} d y d x \\
& =\int_{0}^{3} \int_{1}^{6} \sqrt{30} d y d x \\
& =\left.\int_{0}^{3} \sqrt{30} y\right|_{1} ^{6} d x \\
& =\int_{0}^{7} 5 \sqrt{30} d x \\
& =\left.5 \sqrt{30} x\right|_{0} ^{7}=15 \sqrt{30}
\end{aligned}
$$

Example 3. Find the area of the surface. The part of the surface $z=2 x y$ that lies within the cylinder $x^{2}+y^{2}=2$

$$
\begin{aligned}
& f_{x}=2 y \\
& \begin{aligned}
f_{y} & =2 x \\
A(s) & =\iint_{D} \sqrt{(2 x)^{2}+(2 y)^{2}+1} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(4 r^{2}+1\right)^{\frac{1}{2}} \frac{r}{2} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(4 r^{2}+1\right)^{\frac{1}{2}} \frac{1}{8} d\left(4 r^{2}+1\right) d \theta \\
& =\int_{0}^{2 \pi} d \theta \\
& =2 \pi \\
& \left.=\frac{32}{3}\left(4 r^{2}+1\right)^{\frac{3}{2}}\right)\left.\right|^{\frac{3}{2}} \\
& \left.6-\frac{2}{3}\right)
\end{aligned} \\
&
\end{aligned}
$$

Example 4. Find the area of the surface. The part of the plane $2 x+3 y+z=8$ that lies in the first octant.

$$
\begin{aligned}
A(s) & =\iint_{D} \sqrt{4+9+1} d A \\
& =\int_{0}^{4} \int_{0}^{\frac{8-2 x}{3}} \sqrt{14} d y d x \\
& =\int_{0}^{4} \sqrt{14} \frac{8-2 x}{3} d x \\
& =\frac{8 \sqrt{14}}{3} x-\left.\frac{\sqrt{14}}{3} x^{2}\right|_{0} ^{4} \\
& =\frac{32 \sqrt{14}}{3}-\frac{16 \sqrt{14}}{3} \\
& =\frac{16}{3} \sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
& z=8-2 x-3 y \\
& f_{x}=-2 \\
& f_{y}=-3
\end{aligned}
$$

Find Region D first. To find region D, set $\mathrm{z}=\mathbf{0}$.

Example 5. Find the surface area of a sphere of radius r

Spherical system:

$$
\begin{aligned}
& x=r \sin \phi \cos \theta \\
& \begin{array}{l}
x=r \sin \phi \cos \theta \\
y=r \sin \phi \sin \theta \\
z=r \cos \phi
\end{array} \quad D=\left\{\begin{array}{l}
0 \leqslant \phi \leqslant \pi \\
0 \leqslant \theta \leqslant 2 \pi
\end{array}\right\}
\end{aligned}
$$

parametric domain.

$$
\begin{aligned}
\vec{r}_{\phi} \times \vec{r}_{\theta} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
r \cos \phi \cos \theta & r \cos \phi \sin \theta & -r \sin \phi \\
-r \sin \phi \sin \theta & r \sin \phi \cos \theta & 0
\end{array}\right| \\
& =\left\langle r^{2} \sin ^{2} \phi \cos \theta, r^{2} \sin ^{2} \phi \sin \theta, r^{2} \sin \phi \cos \phi\right\rangle \\
\left|\vec{r}_{\phi} \times \vec{r}_{\theta}\right| & =\sqrt{r^{4} \sin ^{4} \phi \cos ^{2} \theta+r^{4} \sin ^{4} \phi \sin ^{2} \theta+r^{4} \sin ^{2} \phi \cos ^{2} \phi} \\
& =\sqrt{r^{4} \sin ^{4} \phi+r^{4} \sin ^{2} \phi \cos ^{2} \phi}=r^{2} \sqrt{\sin ^{2} \phi}=r^{2} \sin ^{2} \phi
\end{aligned}
$$

$(\sin \phi \geqslant 0 \quad$ since $0 \leqslant \phi \leqslant \pi)$

$$
\begin{aligned}
& \text { Area }=\iint_{D}\left|\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}\right| d A \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi} r^{2} \sin \phi d \phi d \theta=r^{2} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \\
&=\left.2 \pi r^{2}(-\cos \phi)\right|_{0} ^{\pi} \\
&=4 \pi r^{2}
\end{aligned}
$$

