§3.1-3.2 Double integral and Iterated integral

- Review: Single integral over interval.

1. Definition.

Definition.

The definite integral of a continuous function $f(x)$ on $[a, b]$ is defined as the limit of Riemann sum:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i} f\left(x_{i}^{*}\right) \Delta x .
$$

2. Estimation. Definite integral of $f(x)$ from a to b can be estimated by Riemann sum $\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$.

We may use left, right, or mid-points estimations.

3. Calculation.

Theorem. The Fundamental Theorem of Calculus.

If $F(x)$ is any anti-derivative of a continuous function $f(x)$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Example 1. Find $\int_{1}^{7} x^{2} d x$.
Solution: $\int_{1}^{7} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{1}^{7}=114$.

- Double integral of $f(x, y)$ on region R

1. Definition. Riemann integral (concepts)

Definition.

The double integral of $f(x, y)$ on R is defined as limits of Riemann sum:

$$
\iint_{R} f(x, y) d A=\lim _{\Delta A \rightarrow 0} \sum_{i, j} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A .
$$

Here, $\Delta A=(\Delta x)(\Delta y)$.

Geometric meaning:

If $f(x, y)$ is positive, then $\iint_{R} f(x, y) d A$ is the volume of the columns cylinder between $f(x, y)$ and $x y$-plane on area R.

Example 2. Evaluate the double integral $\iint_{R} \sqrt{1-x^{2}} d A$ by first identifying it as the volume of a solid.

$$
z=f(x, y)=\sqrt{1-x^{2}} \text { implies } x^{2}+z^{2}=1
$$

which is a cylinder.

Volume of the cylinder on R is $V=\frac{1}{4}\left(\pi r^{2}\right) h=\frac{\pi}{2}$.
So, $\iint_{R} \sqrt{1-x^{2}} d A=\frac{\pi}{2}$

2. Estimations:

Example 3. Estimate the volume of the solid that lies below the surface

$$
z=16-x^{2}-2 y^{2}
$$

and above the following rectangle $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 2\right.$ and $\left.0 \leq y \leq 2\right\}$

$$
\text { Volume }=\iint_{R} f(x, y) d A \approx \sum_{i, j} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A .
$$

(a) $m=n=4, V \approx 41.5$

(b) $m=n=8, V \approx 44.875$

(c) $m=n=16, V \approx 46.46875$

Example 4. Estimate the volume of the solid that lies below the surface $z=x^{2} y$ and above the following rectangle $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 4\right.$ and $\left.0 \leq y \leq 2\right\}$

Use a Riemann sum with $m=3, n=2$, and take the sample point to be the upper right corner of each square.

$$
\begin{aligned}
& V \approx \sum_{i=1}^{3} \sum_{j=1}^{2} f\left(x_{i}, y_{j}\right) \Delta A \\
& =f(2,1) \Delta A+f(2,2) \Delta A+f(3,1) \Delta A+f(3,2) \Delta A \\
& \\
& \quad+f(4,1) \Delta A+f(4,2) \Delta A \\
& =4 \times 1+8 \times 1+9 \times 1+|8 \times 1+|6 x|+32 x| \\
& =87
\end{aligned}
$$

$$
\Delta x=\frac{4-1}{m}=\frac{3}{3}=1
$$

$$
\Delta y=\frac{2-0}{n}=\frac{2}{2}=1
$$

$$
\Delta A=\Delta x \Delta y=1
$$

The Midpoint Rule:

The double integral of $f(x, y)$ on R can be estimated as

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{i}\right) \Delta A .
$$

Here, \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and \bar{y}_{i} is the midpoint of $\left[y_{i-1}, y_{i}\right]$.

Example 5. Use a Midpoint Rule with $m=3, n=2$. Estimate the double integral of $f(x, y)=x^{2} y$ on the rectangle $R=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 4\right.$ and $\left.0 \leq y \leq 2\right\}$

$$
\begin{aligned}
V \approx & \sum_{i=1}^{3} \sum_{j=1}^{2} f\left(\bar{x}_{i}, \bar{y}_{i}\right) \Delta A \\
= & f(1.5,0.5) \Delta A+f(1.5,1.5) \Delta A+f(2.5,0.5) \Delta A \\
& \quad \Delta x=1 \\
= & \Delta y=1 \\
= & 41.5
\end{aligned}
$$

3. Calculations: (Fubini's Theorem)

Suppose $f=f(x, y)$ is continuous on the rectangle $R=[a, b] \times[c, d]$.

Iterated integrals.

- Similarly as partial derivative, we can calculate Partial Integral $\int_{a}^{b} f(x, y) d x$ respect to x by thinking y as constant.

Example 6. $f(x, y)=x^{2} y$ for $1 \leq x \leq 4$ and $0 \leq y \leq 2$. Find $\int_{a}^{b} f(x, y) d x$ $\int_{a}^{b} f(x, y) d x=\int_{1}^{4} x^{2} y d x=\left[\frac{x^{3}}{3} y\right]_{x=1}^{x=4}=\frac{64}{3} y-\frac{1}{3} y=21 y$.

Definition.

The iterated integral is

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

Example 7. $f(x, y)=x^{2} y$ for $1 \leq x \leq 4$ and $0 \leq y \leq 2$. Find $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$.

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{0}^{2}\left(\int_{1}^{4} x^{2} y d x\right) d y=\int_{0}^{2} 21 y d y=\left[21 \frac{y^{2}}{2}\right]_{0}^{2}=42
$$

Theorem. Fubini's Theorem.

The double integral can be calculated by iterated integrals:

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Example 8. $f(x, y)=x^{2} y$ for $1 \leq x \leq 4$ and $0 \leq y \leq 2$. Find $\iint_{R} f(x, y) d A$.

$$
\iint_{R} f(x, y) d A=\int_{0}^{2} \int_{1}^{4} x^{2} y d x d y=42
$$

Example 9. Calculate the double integral of $f(x, y)=x^{2} y$ on the region $R=\left\{(x, y) \in \mathbb{R}^{2} \mid\right.$ $1 \leq x \leq 4$ and $0 \leq y \leq 2\}$

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{1}^{4}\left(\int_{0}^{2} x^{2} y d y\right) d x \\
& =\int_{1}^{4}\left(\left.\frac{x^{2} y^{2}}{2}\right|_{0} ^{2}\right) d x \\
& =\int_{1}^{4} 2 x^{2} d x=\left.\frac{2 x^{2}}{3}\right|_{1} ^{4}=42
\end{aligned}
$$

Example 10. The region R is given by $0 \leq x \leq 2$ and $1 \leq y \leq 3$.
Calculate the double integral $\iint_{R} f(x, y) d A$ for $f(x, y)=1-x^{2}-y^{2}$.

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{1}^{3} \int_{0}^{2} 1-x^{2}-y^{2} d x d y \\
& =\int_{1}^{3}\left(\left.\left(x-\frac{x^{3}}{3}-x y^{2}\right)\right|_{0} ^{2} d y\right. \\
& =\int_{1}^{3}-\frac{2}{3}-2 y^{2} d y \\
& =-\frac{2}{3} y-\left.\frac{2 y^{3}}{3}\right|_{4} ^{3}=-\frac{56}{3}
\end{aligned}
$$

Example 11. Calculate the iterated integral $\int_{-1}^{1} \int_{0}^{\pi / 2} f(x, y) d x d y$ for $f(x, y)=2 y+y^{3} \cos x$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} 2 y+y^{3} \cos x d x & =2 y x+\left.y^{3} \sin x\right|_{0} ^{\pi / 2}=\pi y+y^{3} \\
\int_{-1}^{1} \int_{0}^{\pi / 2} f(x, y) d x d y & =\int_{-1}^{1} \pi y+y^{3} d y \\
& =\frac{\pi y^{2}}{2}+\left.\frac{y^{4}}{4}\right|_{-1} ^{1} \\
& =0
\end{aligned}
$$

Example 12. Calculate the iterated integral

$$
\int_{0}^{2} \int_{0}^{3} 2 e^{x+2 y} d x d y
$$

Method 2
$\int_{0}^{2} \int_{0}^{3} 2 e^{x+2 y} d x d y$
$\int_{0}^{2} \int_{0}^{3} 2 e^{x+2 y} d x d y$
$=\int_{0}^{2} \int_{0}^{3} 2 e^{x+2 y} d(x+y) d y$
$=\int_{0}^{2} \int_{0}^{3} 2 e^{x} \cdot e^{2 y} d x d y$
$=\int_{0}^{2}\left(\left.2 e^{x+2 y}\right|_{0} ^{3}\right) d y$
$=\int_{0}^{2} e^{2 y} \int_{0}^{3} 2 e^{x} d x d y$
$=\int_{0}^{2} e^{2 y+3}-e^{2 y} d x y$
$=\int_{0}^{2} e^{2 y} \cdot\left(2 e^{3}-2\right) d y$
$=\int_{0}^{2} e^{2 y+1} d(2 y+3)-\int_{0}^{2} e^{2 y-} d z$
$=\left(e^{3}-1\right) \int_{0}^{2} e^{2 y} d z y$
$=\left.e^{2 y+3}\right|_{0} ^{2}-\left.e^{2 y}\right|_{0} ^{2}$
$=\left.\left(e^{3}-1\right) e^{2 y}\right|_{0} ^{2}=\left(e^{3}-1\right)\left(e^{4}-1\right)$
$=e^{7}-e^{3}-e^{4}+1$

Average Value

The average value of a function $f(x, y)$ over a rectangle R is defined to be

$$
f_{\text {avg }}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)$ is the area of R.

Example 13. Find the average value of the paraboloid $f(x, y)=x^{2}+y^{2}$ over $R=[-1,1] \times$ $[-1,1]$.

$$
\begin{array}{rlr}
f_{\arg } & =\frac{1}{A(R)} \int_{-1}^{1} \int_{-1}^{1} x^{2}+y^{2} d x d y & \\
& =\frac{1}{4} \int_{-1}^{1} \frac{2}{3}+2 y^{2} d y & =\frac{x^{3}}{3}+\left.x y^{2}\right|_{-1} ^{1} \\
& =\left.\frac{1}{4}\left(\frac{2 y}{3}+\frac{2}{3} y^{3}\right)\right|_{-1} ^{1} & =\frac{2}{3}+2 y^{2} \\
& =\frac{1}{4}\left(\frac{4}{3}+\frac{4}{3}\right) & \\
& =\frac{2}{3}
\end{array}
$$

Double Integrals over General Regions

- A plane region D is said to be of type (I) if it lies between the graphs of two continuous functions $p(x)$ and $q(x)$, that is,

$$
D=\{(x, y) \mid a \leq x \leq b, p(x) \leq y \leq q(x)\}
$$

Theorem.

Suppose that $f=f(x, y)$ is a continuous function on D of type (I). the double integral can be calculated by iterated integrals:

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{p(x)}^{q(x)} f(x, y) d y d x
$$

- A plane region D is said to be of type (II) if it is given by

$$
D=\{(x, y) \mid c \leq y \leq d, g(y) \leq x \leq h(y)\}
$$

Theorem.

If D is the region of type (II), the double integral can be calculated by iterated integrals:

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{g(y)}^{h(y)} f(x, y) d x d y
$$

Example 14 (Type (I)). Let D the region in the 1 st quadrant bounded by $y=4-x^{2}$ and $y=3 x$.
Sketch the region D and calculate the double integral $\iint_{D} 2 x y d A$.
$x^{1 / 23 x}$ Find the interaction pint

$$
\left\{\begin{aligned}
y=4-x^{2} \\
y=3 x
\end{aligned} \Rightarrow \begin{array}{l}
\\
\\
\\
x^{2}+3 x-x^{2}=3 x=0 \\
\\
\\
(x+4)(x-1)=0
\end{array}\right.
$$

$$
\iint_{D} 2 x y d A=\int_{0}^{1} \int_{3 x}^{4-x^{2}} 2 x y d y d x
$$

$$
=\int_{0}^{1}\left(\left.x y^{2}\right|_{3 x} ^{4-x^{2}}\right) d x
$$

$$
=\int_{0}^{1} x\left(4-x^{2}\right)^{2}-x(3 x)^{2} d x
$$

$$
=\int_{0}^{1} x^{5}-8 x^{3}+16 x-9 x^{3} d x
$$

$$
=\int_{0}^{1} x^{5}-17 x^{3}+16 x d x
$$

$$
=\frac{x^{6}}{6}-\frac{17}{4} x^{4}+\left.8 x^{2}\right|_{0} ^{1}=\frac{1}{6}-\frac{17}{4}+8
$$

Example 15 (Type (II)). Let D the region bounded by the graphs $x=y$ and $x=y^{2}$.
Sketch the region D and calculate the double integral $\iint_{D} 2 x y+6 y^{2} d A$.

$$
\begin{aligned}
& \iint_{D} 2 x y+6 y^{2} d A . \quad\left\{\begin{array}{l}
x=y \\
x=y^{2}
\end{array}\right. \\
& \int_{0}^{1} \int_{y^{2}}^{y}\left(2 x y+6 y^{2}\right) d x d y \\
& =\left.\int_{0}^{1}\left(x^{2} y+6 y^{2} x\right)\right|_{y^{2}} ^{y} d y \\
& =\int_{0}^{1}\left(y^{3}+6 y^{3}\right)-\left(y^{5}+6 y^{4}\right) d y \\
& =\int_{0}^{1}-y^{5}-6 y^{4}+7 y^{3} d y \\
& =-\frac{y^{5}}{6}-\frac{6 y^{5}}{5}+\left.\frac{7 y^{4}}{4}\right|_{0} ^{1} \\
& =-\frac{1}{6}-\frac{6}{5}+\frac{7}{4} \\
& =\frac{23}{60} \\
& \int_{0}^{1} \int_{x}^{\sqrt{x}} 2 x y+6 y^{2} d y d x \\
& =\int_{0}^{1} x y^{2}+\left.2 y^{3}\right|_{x} ^{x^{\frac{1}{2}}} d x \\
& =\int_{0}^{1}\left(x^{2}+2 x^{\frac{3}{2}}\right)-\left(x^{3}+2 x^{3}\right) d x \\
& =\int_{0}^{1}-3 x^{3}+x^{2}+2 x^{\frac{3}{2}} d x \\
& =-\frac{3}{4} x^{4}+\frac{x^{3}}{3}+\left.\frac{2 x^{\frac{5}{2}}}{\frac{5}{2}}\right|_{0} ^{1} \\
& =-\frac{3}{4}+\frac{1}{3}+\frac{4}{5} \\
& =\frac{23}{60}
\end{aligned}
$$

Example 16 (Type (II)). Let D the region bounded by the the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$
Sketch the region D and calculate the double integral $\iint_{D} 2 x y d A$.

$$
\left.\begin{array}{rl}
\iint_{D} 2 x y d A & =\int_{-2}^{4} \int_{\frac{1}{2} y^{2}-3}^{y+1} 2 x y d x d y \\
& =\left.\int_{-2}^{4} x^{2} y\right|_{\frac{1}{2} y^{2}-3} ^{y^{2}+1} d y \\
& =\int_{-2}^{4} y\left((y+1)^{2}-\left(\frac{1}{2} y^{2}-3\right)^{2}\right) d y \\
y^{2}=2 x-6 \\
y^{2}=2(y+1)+6 \\
y^{2}-2 y-8=0 \\
(y-4)(y+2)=0 \\
y=4 \quad y=-2
\end{array}\right\}
$$

Example 17. Evaluate the iterated integral $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y$.

$$
D=\left\{\begin{array}{l|l}
(x, y) & \begin{array}{c}
0 \leq y \leq 1 \\
y \leqslant x \leqslant 1
\end{array}
\end{array}\right\}
$$

herd to do directly.

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y=\iint_{D} e^{-x^{2}} d A & =\int_{0}^{1} \int_{0}^{x} e^{-x^{2}} d y d x \\
& =\left.\int_{0}^{1} y e^{-x^{2}}\right|_{0} ^{x} d x \\
& =\int_{0}^{1} x e^{-x^{2}} d x \\
& =-\frac{1}{2} \int_{0}^{1} e^{-x^{2}} d\left(-x^{2}\right) \\
& =-\left.\frac{1}{2} e^{-x^{2}}\right|_{0} ^{1} \\
& =-\frac{1}{2}\left(e^{-1}-1\right)
\end{aligned}
$$

Theorem.

Area of the region D can by computed by

$$
\text { Area of } D=\iint_{D} 1 d A
$$

dome with height I

$$
V=\operatorname{Arec} \cdot 1
$$

Example 18. Let D be the region bounded by $y=x-1$ and $y^{2}=2 x+6$. Find the area of D.

Review: $\frac{1}{a}$

$$
D=D_{1} \cup D_{2}
$$

$$
D_{1} \text { type (I) , } D_{2} \text { type (II) }
$$

Property of the double integrals :

Theorem.

$$
\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{1}} f(x, y) d A
$$

