\S **2.8 Parameterizing surfaces**

Review of §1: We can use parametric equation $\vec{r}(t) = \langle x(t), y(t) \rangle$ or $\vec{c}(t) = \langle x(t), y(t), z(t) \rangle$ for $a \leq t \leq b$ to describe **curves** in \mathbb{R}^2 or \mathbb{R}^3 .

Example 1. Line in \mathbb{R}^2 or \mathbb{R}^3 .

Example 2. Ellipse in \mathbb{R}^2 .

Example 3. Helix in \mathbb{R}^3 .

We know that z = f(x, y) or F(x, y, z) = 0 describe a surface in \mathbb{R}^3 .

We use a vector function $\vec{r}(u, v)$ with two parameters u, v to describe surface in \mathbb{R}^3 .

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$
$$= \langle x(u,v), \ y(u,v), \ z(u,v) \rangle$$

This means that the surface contains all points $(x, y, z) \in \mathbb{R}^3$ such that

$$x = x(u, v), \ y = y(u, v), \ z = z(u, v).$$

Example 4. Give a parametric description for a plane in \mathbb{R}^3 .

Example 5. Give a parametric description for a Sphere $x^2 + y^2 + z^2 = r^2$ in \mathbb{R}^3 .

Example 6. Give a parametric description for a Cylinder in \mathbb{R}^3 .

A cylinder can be described as f(x, y) = 0. So, we can get x = g(u), y = h(u) and z = v. $f = a \cos U$ $y = b \sinh U$ z = V

Grid curves: (1) Put u = a. (b) Put v = b.

Example 7. (Parametrize a Plane) Plane in \mathbb{R}^3 with position vector $\vec{r_0}$ such that contains two vectors \vec{a} and \vec{b} .

Surfaces of Revolution

$$x = x$$
, $y = f(x)\cos\theta$, $z = f(x)\sin\theta$

for $a \le x \le b$, $f(x) \ge 0$ and $0 \le \theta \le 2\pi$.

Example 8. Describe $x = \sin u \sin v$, y = u, $z = \sin u \cos v$ for $0 \le u \le 2\pi$, $0 \le v \le 2\pi$.

Tangent Planes. Suppose the surface is given by F(x, y, z) = 0. In §2.1, the tangent plane to the level surface at point $P(x_0, y_0, z_0)$ is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

Now, suppose **parametric surface** is given by $\vec{r}(u, v) = \langle x, y, z \rangle$,

$$x = x(u, v), \ y = y(u, v), \ z = z(u, v).$$

Two **tangent vectors** at $\vec{r}(u_0, v_0) = (x_0, y_0, z_0)$ are given by

 $\vec{r}_u(u_0, v_0) = \langle x_u(u_0, v_0), y_u(u_0, v_0), z_u(u_0, v_0) \rangle$ $\vec{r}_v(u_0, v_0) = \langle x_v(u_0, v_0), y_v(u_0, v_0), z_v(u_0, v_0) \rangle$ The tangent plane has a parametric description:

$$\vec{r} = \langle x_0, y_0, z_0 \rangle + a \vec{r_u} + b \vec{r_u}$$

The **normal vector** is given by

 $\vec{n} = \vec{r}_u \times \vec{r}_v.$

A continuously differentiable parameterization (parametric surface) $\vec{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ is called **regular** at (u_0, v_0) if neither \vec{r}_u nor \vec{r}_v is a scalar multiple of the other at (u_0, v_0) .

 \vec{r}_u and \vec{r}_v are not scalar multiple of each other at (u_0, v_0) if and only if $\vec{r}_u \times \vec{r}_v \neq 0$. In this case, \vec{r}_u and \vec{r}_v are called linearly independent, (as in Linear Algebra.)

A continuously differentiable parameterization $\vec{r}(u, v)$ is called a **local regular parameterization** if it is regular on all points in domain.

Example 9. Is $\vec{r}(u, v) = \langle u, u \cos v, u \sin v \rangle$ a local regular parametrization?

 $\vec{r}_u = \langle 1, \cos v, \sin v \rangle$ and $\vec{r}_v = \langle 0, -u \sin v, u \cos v \rangle$. When u = 0, $\vec{r}_v = 0\vec{r}_u$. $\vec{r}(u, v)$ is not regular on points (0, v). So, it is not a local regular parametrization.

Example 10. Is $\vec{r}(u, v) = \langle u, v, f(u, v) \rangle$ a local regular parametrization for a continuous differentiable f?

 $\vec{r}_u = \langle 1, 0, f_u \rangle$ and $\vec{r}_v = \langle 0, 1, f_v \rangle$. So, \vec{r}_u and \vec{r}_v are always independent. So, it is a local regular parametrization.

Example 11. Suppose the surface is given by parametric equations x = 2u, y = uv, $z = v^2$. Find the tangent plane to the surface at (2, 1, 1).

Which point is not regular?

tongent vectors:	U=/ V=/
$\vec{r}_{u} = \langle X_{u}, \forall_{u}, Z_{u} \rangle = \langle 2, V, o \rangle$	
$\vec{Y}_{v} = \langle X_{v}, y_{v}, z_{v} \rangle = \langle o, u, zv \rangle$	tongent
Normal Vector $\vec{n}' = \vec{y}_{u} \times \vec{y}_{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ z & v & o \\ o & u & zv \end{vmatrix}$ $= 2v^{2} \vec{i} - 4v\vec{j} + 2u\vec{k}$	or parametric plane: $\vec{r} = \vec{r_0} + u\vec{a} + v\vec{b}$ Here $\vec{a} = \langle 2, 1, 0 \rangle$ $\vec{b} = \langle 0, 1, 2 \rangle$
ort (2,1, 1,), the normal vector is $\vec{n}^2 = (2, -4, 2)$	$x_{1}^{2} = \langle 2, 1, 1 \rangle$ $\int x_{2}^{2} = 2 + 2V$
The tangent plane at (2, 1, 1) is \vec{n} $(\vec{r} - \vec{r_o}) = 0$	y = 1 + u + v z = 1 + 2u
<2, 4, 2> < x-2, y-1, Z+> = 0 2(x-2)-4(y-1)+2(Z+)=0	
$2\chi -4y +2z -2 = 0$ The only non-regular point is when $v = 0$ and v	u = 0. So, it is $(0, 0, 0)$.