§2.8 Parameterizing surfaces

Review of $\S 1$: We can use parametric equation $\vec{r}(t)=\langle x(t), y(t)\rangle$ or $\vec{c}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$ to describe curves in \mathbb{R}^{2} or \mathbb{R}^{3}.

Example 1. Line in \mathbb{R}^{2} or \mathbb{R}^{3}.
$\vec{r}(t)=\vec{r}_{0}+t \vec{v}=\langle a, b\rangle+t\langle c, d\rangle$.
Then $x(t)=a+c t, y(t)=b+c t$.

Example 2. Ellipse in \mathbb{R}^{2}.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad\left\{\begin{array} { l }
{ \frac { x } { a } = \operatorname { c o s } \theta } \\
{ \frac { y } { b } = \operatorname { s i n } \theta } \\
{ 0 \leqslant \theta \leqslant 2 \pi }
\end{array} \quad \left\{\begin{array}{l}
x=a \cos \theta \\
y=b \sin \theta
\end{array} \quad 0 \leqslant \theta \leqslant 2 \pi .\right.\right.
$$

Example 3. Helix in \mathbb{R}^{3}.

We know that $z=f(x, y)$ or $F(x, y, z)=0$ describe a surface in \mathbb{R}^{3}.
We use a vector function $\vec{r}(u, v)$ with two parameters u, v to describe surface in \mathbb{R}^{3}.

$$
\begin{aligned}
\vec{r}(u, v) & =x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k} \\
& =\langle x(u, v), y(u, v), z(u, v)\rangle
\end{aligned}
$$

This means that the surface contains all points $(x, y, z) \in \mathbb{R}^{3}$ such that

$$
x=x(u, v), y=y(u, v), z=z(u, v)
$$

Example 4. Give a parametric description for a plane in \mathbb{R}^{3}.

$$
\begin{aligned}
& \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
& \langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0 \\
& a x+b y+c z=d \\
& \text { So, we can use } y=u, z=v \text { as parameters } \\
& \text { to describe the equation } \\
& x=\frac{d-b u-c v}{a}, y=u, z=v .
\end{aligned}
$$

Example 5. Give a parametric description for a Sphere $x^{2}+y^{2}+z^{2}=r^{2}$ in \mathbb{R}^{3}.

Example 6. Give a parametric description for a Cylinder in \mathbb{R}^{3}.

A cylinder can be described as $f(x, y)=0$. So, we can get $x=g(u), y=h(u)$ and $z=v$.

$$
\begin{aligned}
& x=a \cos u \\
& y=b \sin u \\
& z=v
\end{aligned}
$$

Grid curves: (1) Put $u=a . \quad$ (b) Put $v=b$.

Example 7. (Parametrize a Plane) Plane in \mathbb{R}^{3} with position vector \vec{r}_{0} such that contains two vectors \vec{a} and \vec{b}.

$$
\begin{aligned}
& \vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle, \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle . \\
& \vec{r}=\overrightarrow{r_{0}}+u \vec{a}+v \vec{b} \\
& x(u, v)=x_{0}+u a_{1}+v b_{1} \\
& y(u, v)=y_{0}+u a_{2}+v b_{2} \\
& z(u, v)=z_{0}+u a_{3}+v b_{3}
\end{aligned}
$$

Surfaces of Revolution

$$
x=x, \quad y=f(x) \cos \theta, \quad z=f(x) \sin \theta
$$

for $a \leq x \leq b, f(x) \geq 0$ and $0 \leq \theta \leq 2 \pi$.

Example 8. Describe $x=\sin u \sin v, \quad y=u, \quad z=\sin u \cos v$ for $0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi$.

Tangent Planes. Suppose the surface is given by $F(x, y, z)=0$.
In $\S 2.1$, the tangent plane to the level surface at point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Now, suppose parametric surface is given by $\vec{r}(u, v)=\langle x, y, z\rangle$,

$$
x=x(u, v), y=y(u, v), z=z(u, v) .
$$

Two tangent vectors at $\vec{r}\left(u_{0}, v_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right)$ are given by

$$
\begin{aligned}
& \vec{r}_{u}\left(u_{0}, v_{0}\right)=\left\langle x_{u}\left(u_{0}, v_{0}\right), y_{u}\left(u_{0}, v_{0}\right), z_{u}\left(u_{0}, v_{0}\right)\right\rangle \\
& \vec{r}_{v}\left(u_{0}, v_{0}\right)=\left\langle x_{v}\left(u_{0}, v_{0}\right), y_{v}\left(u_{0}, v_{0}\right), z_{v}\left(u_{0}, v_{0}\right)\right\rangle
\end{aligned}
$$

The tangent plane has a parametric description:

$$
\vec{r}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+a \vec{r}_{u}+b \vec{r}_{v}
$$

The normal vector is given by

$$
\vec{n}=\vec{r}_{u} \times \vec{r}_{v} .
$$

A continuously differentiable parameterization (parametric surface) $\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ is called regular at $\left(u_{0}, v_{0}\right)$ if neither \vec{r}_{u} nor \vec{r}_{v} is a scalar multiple of the other at $\left(u_{0}, v_{0}\right)$.
\vec{r}_{u} and \vec{r}_{v} are not scalar multiple of each other at $\left(u_{0}, v_{0}\right)$ if and only if $\vec{r}_{u} \times \vec{r}_{v} \neq 0$. In this case, \vec{r}_{u} and \vec{r}_{v} are called linearly independent, (as in Linear Algebra.)

A continuously differentiable parameterization $\vec{r}(u, v)$ is called a local regular parameterization if it is regular on all points in domain.

Example 9. Is $\vec{r}(u, v)=\langle u, u \cos v, u \sin v\rangle$ a local regular parametrization?
$\vec{r}_{u}=\langle 1, \cos v, \sin v\rangle$ and $\vec{r}_{v}=\langle 0,-u \sin v, u \cos v\rangle$. When $u=0, \vec{r}_{v}=0 \vec{r}_{u} \cdot \vec{r}(u, v)$ is not regular on points $(0, v)$. So, it is not a local regular parametrization.

Example 10. Is $\vec{r}(u, v)=\langle u, v, f(u, v)\rangle$ a local regular parametrization for a continuous differentiable f ?
$\vec{r}_{u}=\left\langle 1,0, f_{u}\right\rangle$ and $\vec{r}_{v}=\left\langle 0,1, f_{v}\right\rangle$. So, \vec{r}_{u} and \vec{r}_{v} are always independent. So, it is a local regular parametrization.

Example 11. Suppose the surface is given by parametric equations $x=2 u, y=u v, z=v^{2}$. Find the tangent plane to the surface at $(2,1,1)$.

Which point is not regular?
tangent vectors:
$u=1 \quad v=1$
$\vec{r}_{u}=\left\langle x_{u}, y_{u}, z_{u}\right\rangle=\langle 2, v, 0\rangle$
$\overrightarrow{r_{v}}=\left\langle x_{v}, y_{v}, z_{v}\right\rangle=\langle 0, u, 2 v\rangle$
trent
normal vector $\begin{aligned} \vec{n}=\overrightarrow{r_{u}} \times \vec{r}_{v} & =\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & v & 0 \\ 0 & u & 2 v\end{array}\right| \\ & =2 v^{2} \vec{i}-4 v \vec{j}+2 u \vec{k}\end{aligned}$
at $(2,1,1$,$) , the normal vector is$

$$
\vec{n}=\langle 2,-4,2\rangle
$$

The tangent plane at $(2,1,1)$ is

$$
\begin{aligned}
& \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
& \langle 2,4,2\rangle\langle x-2, y-1, z-1\rangle=0 \\
& 2(x-2)-4(y-1)+2(z-1)=0
\end{aligned}
$$

$$
2 x-4 y+2 z-2=0
$$

The only non-regular point is when $v=0$ and $u=0$. So, it is ($0,0,0$).

