§2.4 Differentiation rules

Theorem. Linear Property:

Let $f(x, y)$ and $g(x, y)$ be two differentiable functions and k a real number. Then we have

$$
\frac{\partial}{\partial x}(f+g)=\frac{\partial}{\partial x} f+\frac{\partial}{\partial x} g \quad \text { and } \quad \frac{\partial}{\partial x}(k f)=k \frac{\partial}{\partial x} f
$$

Similarly for $\frac{\partial}{\partial y}$.

We can also use gradient vector to describe the linear property:

$$
\nabla(f+g)=\nabla(f)+\nabla(g) \quad \text { and } \quad \nabla(k f)=k \nabla(f)
$$

Theorem. Product Rule:

Let $f(x, y)$ and $g(x, y)$ be two differentiable functions and k a real number. Then we have

$$
\frac{\partial}{\partial x}(f g)=f \frac{\partial}{\partial x} g+g \frac{\partial}{\partial x} f
$$

Similarly for $\frac{\partial}{\partial y}$.

We can also use gradient vector to describe the linear property:

$$
\nabla(f g)=f \nabla(g)+g \nabla(f)
$$

Review: The Chain Rule gives the rule for differentiating a composite function $y=f(g(t))$. If we denote the inside function $x=g(t)$, then

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

Theorem. Chain Rule

Let $z=f(x, y)$ is a differentiable function. Suppose both $x=g(t)$ and $y=h(t)$ are differentiable functions. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

The chain rule is also written as

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Using the gradient vector,

$$
\frac{d z}{d t}=\nabla f \cdot \frac{d}{d t}\langle x, y\rangle
$$

Proof.

$$
\begin{aligned}
& \Delta z=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
& \frac{\Delta z}{\Delta t}=\frac{\partial f}{\partial x} \frac{\Delta x}{\Delta t}+\frac{\partial f}{\partial y} \frac{\Delta y}{\Delta t}+\varepsilon_{1} \frac{\Delta x}{\Delta t}+\varepsilon_{2} \frac{\Delta y}{\Delta t}
\end{aligned}
$$

Take limit as $\Delta t \rightarrow 0$, we obtained.

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Example 1. Let $z=f(x, y)=x y^{2}+y$, where $x=\sin t$ and $y=\ln t$. Find $\frac{d z}{d t}$.

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =y^{2} \cdot \cos t+(2 x y+1)\left(\frac{1}{t}\right) \\
& =(\ln t)^{2} \cos t+(2 \sin t(\ln t)+1)\left(\frac{1}{t}\right)
\end{aligned}
$$

Example 2. Let $z=f(x, y)=x y e^{y}$, where $x=\sin \left(t^{3}\right)$ and $y=t^{2}$. Find $\frac{d z}{d t}$.

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =y e^{y}\left(3 t^{2} \cos \left(t^{3}\right)\right)+\left(x e^{y}+x y e^{y}\right) 2 t \\
& =t^{2} e^{t^{2}}\left(3 t^{2} \cos t^{3}\right)+\left(\sin t^{3}\left(e^{4^{2}}\right)+\left(\sin t^{3}\right) t^{2} e^{t^{2}}\right) 2 t
\end{aligned}
$$

Theorem.

Let $z=f(x, y)$ is a differentiable function. Suppose both $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions. Then,

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Example 3. Let $z=f(x, y)=x^{2}-y^{3}$, where $x=s t^{3}$ and $y=s+t^{2}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} & \frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =2 x\left(t^{3}\right)+\left(-3 y^{2}\right) 1 & & =2 x\left(3 s t^{2}\right)+\left(-3 y^{2}\right) 2 t \\
& =2 s t^{3} t^{3}-3\left(s+t^{2}\right)^{2} & & =2 s t^{3}\left(3 s t^{2}\right)+(-3)\left(s+t^{2}\right)^{2} 2 t
\end{aligned}
$$

Example 4. Let $z=f(x, y)=y \ln x$, where $x=r+t^{3}$ and $y=r t$. Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial t}$.

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} & \frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =\left(\frac{y}{x}\right) 1+(\ln x) t & & =\frac{y}{x}\left(3 t^{2}\right)+(\ln x)(r) \\
& =\frac{r t}{r+t^{3}}+\left(\ln \left(r+t^{3}\right)\right) \cdot(t) & & =\frac{r t}{r+t^{3}}\left(3 t^{4}\right)+\left(\ln \left(r+t^{3}\right)\right) r
\end{aligned}
$$

Theorem.

Let $u=f(x, y, z)$ is a differentiable function. Suppose both x, y and z are differentiable functions with variable t. Then u is a differentiable function of t and

$$
\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+\frac{\partial u}{\partial z} \frac{d z}{d t}
$$

Let $u=f(x, y, z, w)$ is a differentiable function. Suppose both x, y, z and w are differentiable functions on variables r, s, t. Then,

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial w} \frac{\partial y}{\partial s}
$$

The rest $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial t}$ are similar. It is better to use a tree diagram to look at the formula:

Example 5. Let $u=f(x, y, z)=y \ln (x z)$, where $x=r s+t^{3}, y=e^{s t}$ and $z=r s^{2} t$. Find $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial r} \\
& =\left(\frac{y}{x z} \cdot z\right)(s)+\ln (x z)(0)+\left(\frac{y}{x z} \cdot x\right) \cdot\left(s^{2} t\right) \\
& =\frac{e^{s t} s}{r s+t^{3}} \cdot+\frac{e^{s t}}{r s^{2} t} \cdot\left(s^{2} t\right) \\
\frac{\partial u}{\partial s} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s} \\
& =\left(\frac{y}{x}\right) r+\ln (x z)\left(t e^{s t}\right)+\left(\frac{y}{z}\right) 2 r s t \\
& =\left(\frac{e^{s t}}{r s+t^{3}}\right) r+\left(\ln \left(\left(r s+t^{3}\right) r s^{2} t\right)\right) t e^{s t}+\left(\frac{e^{s t}}{r s^{2} t}\right) 2 r s t
\end{aligned}
$$

Implicit Differentiation.

Suppose that an equation $F(x, y)=0$ defines y implicitly as a differentiable function of x. That is a function $y=f(x)$ such that $F(x, f(x))=0$. If F is differentiable, apply chain rule to $F(x, y)=0$ respect to x, then

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

We obtained

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_{x}}{F_{y}}
$$

Example 6. Find $\frac{d y}{d x}$ for $x^{2}+y^{3}+\sin (x y)=0$

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{2 x+y \cos (x y)}{3 y^{2}+x \cos (x y)}
$$

More generally, suppose that an equation $F(x, y, z)=0$ defines z implicitly as a differentiable function of x and y. That is a function $z=f(x, y)$ such that $F(x, y, f(x, y))=0$. If F is differentiable, then

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

Example 7. Find $\frac{\partial z}{\partial x}$ for the implicit function $x^{2}+y^{2}+z^{2}+x y z=0$

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x+y z}{2 z+x y} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{2 y+x z}{2 z+x y}
\end{aligned}
$$

Solution for HW 32:

The magnitude of net force is $F(x, y, z)$ with position function $\langle x, y, z\rangle=\vec{p}(t)=\left\langle t^{2}, t^{3}+\right.$ $2, t+1\rangle$. When $t=1$, the position is $\vec{p}(1)=\langle 1,3,2\rangle$
The derivative (rate of change) of the magnitude of the net force is

$$
\frac{F(t)}{d t}=F_{x} \frac{d x}{d t}+F_{y} \frac{d y}{d t}+F_{z} \frac{d z}{d t}=F_{x}(2 t)+F_{y}\left(3 t^{2}\right)+F_{z}
$$

The derivative (rate of change) of the magnitude of the net force at $t=1$ is

$$
\frac{F(t)}{d t}=4.5(2)+10(3)+(-2)=37 \mathrm{~N} / \mathrm{s}
$$

