§2.3 Linear approximation, tangent planes, and the differential

Review: Tangent Lines and Linear Approximations $y=f(x)$ at $x=a$.

Definition.

Suppose a surface S has equation $z=f(x, y)$. The two cross-sections (traces) of f in the planes $y=b$ and $x=a$ have tangent lines L_{1} and L_{2} at the point (a, b).
Then the tangent plane to the surface S at the point (a, b) is defined to be the plane that contains both tangent lines.

Theorem.
Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P(a, b, c)$ is

$$
z-c=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Here $c=f(a, b)$.

An compact way to look at the equation of tangent plane is

$$
z-f(a, b)=\nabla f(a, b) \cdot\langle x-a, y-b\rangle
$$

If we denote $F(x, y, z)=f(x, y)-z$, the an even compact way to write equation of tangent plane is

$$
\nabla F(a, b, c) \cdot\langle x-a, y-b, z-c\rangle=0
$$

Proof.
(1) Trace C_{1} on $y=b$ has equation $z=f(x, b)$.

Tangent line L_{1} has slope $f_{x}(a, b)$, tangent vector $\vec{v}_{1}=\left\langle 1,0, f_{x}(a, b)\right\rangle$
(2) Trace C_{2} on $x=a$ has equation $z=f(a, y)$.

Tangent line L_{2} has slope $f_{y}(a, b)$, tangent vector ${\overrightarrow{v_{2}}}=\left\langle 0,1, f_{y}(a, b)\right\rangle$
(3) Normal vector of the tangent plane:

$$
\begin{aligned}
\vec{n}=\vec{V}_{1} \times \vec{V}_{2}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & f_{x}(a, b) \\
0 & 1 & f_{y}(a, b
\end{array}\right| & =-f_{x}(a, b) \vec{i}-f_{y}(a, b) \vec{j}+\vec{k} \\
& =\left\langle-f_{x}(a, b),-f_{y}(a, b), 1\right\rangle
\end{aligned}
$$

(4) The equation for tangent plane:

$$
\langle x-a, y-b, z-c\rangle \cdot\left\langle-f_{x}(a, b),-f_{y}(a, b), 1\right\rangle=0
$$

or $z-c=f_{x}(a, b)(x-a)+{ }^{2} f_{y}(a, b)(y-b)$.

Example 1. Find the tangent plane to the elliptic paraboloid $z=3 x^{2}+y^{2}$ at the point $(1,2,7)$.

$$
\begin{aligned}
& f(x, y)=3 x^{2}+y^{2} \\
& f_{x}(x, y)=6 x \text { gives } f_{x}(1,2)=6 \\
& f_{y}(x, y)=2 y \text { gives } f_{y}(1,2)=4
\end{aligned}
$$

The tangent plane has an equation $z-7=6(x-1)+4(y-2)$, or $z=6 x+4 y-7$

The function $L(x, y)$ for the above tangent plane is called the linearization of f at $P=(1,2)$ and the approximation

$$
f(x, y) \approx 6 x+4 y-7
$$

is called the linear approximation or tangent plane approximation of f at $P=(1,2)$.
We can use the linear approximation to approx the value of the function near the point P.
For instance, at the point $Q=(1.1,1.9)$, the linear approximation gives $f(1.1,1.9) \approx 7.2$.
The precise value $f(1.1,1.9)=3\left(1.1^{2}\right)+\left(1.9^{2}\right)=7.24$.

Definition.

The linear approximation $f(x, y)$ at the point (a, b) is

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Recall that the data $f_{x}(a, b)$ and $f_{y}(a, b)$ is captured by the gradient vector

$$
\nabla f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle
$$

The linear approximation formula can be written as Differential Approximation

$$
\Delta(z) \approx \nabla f(a, b) \cdot \Delta(x, y)
$$

Here $\Delta(z)$ is the difference of the value $f(x, y)-f(a, b)$, and $\Delta(x, y)$ is the difference vector $\langle x, y\rangle-\langle a, b\rangle$.

Example 2. Suppose $f(2,1)=13, \nabla f(2,1)=\langle 12,2\rangle$. Estimate the value of f at $Q=$ (2.1, 0.9).

$$
f(2.1,0.9)-f(2,1) \approx \nabla f(2,1) \cdot \Delta(x, y)=\langle 12,2\rangle \cdot\langle 0.1,-0.1\rangle
$$

So, $f(2.1,0.9) \approx 14$.
The precise is $f(2.1,0.9)=14.04$.

Example 3. Find the tangent plane to the elliptic paraboloid $z=4+x-x^{2}-y^{3}$ at the point $(1,1)$. Look at the graph at https://www.geogebra.org/3d

The Tangent Plane is $z-3=-(x-1)-3(y-1)$ or $L(x, y)=3-(x-1)-3(y-1)$. The graph is

Review: Differentialble function $z=f(x)$ at $x=a$.

$$
\Delta z=f^{\prime}(a) \Delta x+\varepsilon \Delta x
$$

where $\varepsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.
$f(x)-f(\beta) \approx f^{\prime}(a)(x-a)$ good approximation.

Definition.

The function $z=f(x, y)$ is differentiable at (a, b) if Δz can be expressed as

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where ϵ_{1} and $\epsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

A differentiable function is one for which the linear approximation is a good approximation when (x, y) is near (a, b).

Theorem.

If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Example 4. Show that $f(x, y)=x e^{x y}-x^{2}$ is differentiable at $(0,1)$ and find its linearization there.

$$
\begin{aligned}
& f_{x}(x, y)=e^{x y}+x y e^{x y}-2 x \\
& f_{y}(x, y)=x^{2} e^{x y}
\end{aligned}
$$

Boch $f_{x}(x, y)$ and $f_{y}(x, y)$ exist and continuous, in \mathbb{R}^{2}.
So $f(x, y)$ is differentible at $(0,1)$

$$
\begin{aligned}
L(x, y) & =f(0,1)+f_{x}(0,1)(x-0)+f_{y}(0,1)(y-1) \\
& =0+(x-0)+0_{4} \\
& =x
\end{aligned}
$$

Definition.

For a differentiable function $z=f(x)$, the differentials $d x$ is an independent variable, (i.e., it can be given any values). The differential $d z$ is defined by

$$
d z:=f^{\prime}(x) d x=\frac{d z}{d x} d x
$$

$$
\begin{aligned}
& \Delta z \approx d z \\
& f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
& f(x) \approx f(a)+d z
\end{aligned}
$$

Definition.

For a differentiable function $z=f(x, y)$ of two variables, we define the differentials $d x$ and $d y$ to be independent variables, (i.e., they can be given any values). The differential $d z$ is defined by

$$
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Example 5. (a) If $z=f(x, y)=x^{3}+2 x y-y^{2}$, find the differential $d z$.
(b) If x changes from 2 to 2.03 and y changes from 3 to 2.95 , compare the values of Δz and $d z$.

$$
\begin{array}{ll}
& d z \\
x=2 \\
y=3 \\
y & \\
d x=0.03 \\
d y=0.05 & d z
\end{array} \quad=\left(3(2)^{2}+2(3)\right) 0.03+(2(2)-2(3))(-0.05)
$$

Example 6. The length and width of a rectangle are measured as 52 cm and 50 cm , respectively, with an error in measurement of at most 0.02 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.

$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
A & =x y \\
d A & =\frac{\partial A}{\partial x} d x+\frac{\partial A}{\partial y} d y \\
& =y d x+x d y
\end{aligned}
$$

Information

$$
x=52 \mathrm{~cm} y=50 \mathrm{~cm}
$$

$$
\Delta x \leqslant 0.02 \mathrm{~cm}
$$

$$
\Delta y \leqslant 0.02 \mathrm{~cm}
$$

$$
\text { Maximum Error }=\triangle A \approx d A
$$

$$
d A=50(0.02)+52(0.02)
$$

$$
=2.04 \mathrm{~cm}
$$

HW22. A cardboard box is measured to have length, width, and height of 2, 3, and 1 feet, respectively, to enclose a volume of 6 cubic feet. However, more-careful measurements show that the box is really 2.01 by 2.98 by 1.03 feet. (a) Use linear approximation to estimate the revised (measured) volume of the box. (b) Use differential approximation to estimate the change in the (measured) volume of the box. (c) Show that your answers to part (a) and (b) agree.

Let x, y, z be the length, width, and height respectively.
The volume is $V=x y z$.
(a) $V(x, y, z) \approx V(a, b, c)+V_{x}(a, b, c)(x-a)+V_{y}(a, b, c)(y-b)+V_{z}(a, b, c)(z-c)$

So $V(2.01,2.98,1.03) \approx V(2,3,1)+4(0.01)+2(-0.02)+6(0.03)=6.18$
(b) $d V=V_{x} d x+V_{y} d y+V_{z} d z=y z d x+x z d y+x y d z$
$d V(2,3,1)=4(0.01)+2(-0.02)+6(0.03)=0.18$
(c). $d V(2,3,1) \approx \Delta V=6.169-6$

Example 7. Use differentials to estimate the amount of metal in a closed cylindrical can that is 26 cm high and 8 cm in diameter if the metal in the top and the bottom is 0.3 cm thick and the metal in the sides is 0.06 cm thick.

$$
\begin{aligned}
& \text { diameter }=8 \Rightarrow \text { radius } r=4 \mathrm{~cm} \\
& \text { Volume } V=\pi r^{2} h \\
& \Delta V \approx d V=\frac{\partial V}{\partial r} d r+\frac{\partial V}{\partial h} d h=2 \pi r h d r+\pi r^{2} d h \\
& d V=2 \pi(4)(0.06)+\pi\left(4^{2}\right) 0.6 \quad d r=0.06 \\
& =22.08 \pi \approx 69.33 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 8. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation

$$
P V=8.25 T
$$

where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 11 L to 11.2 L and the temperature decreases from 310 K to 300 K .

$$
\begin{aligned}
& \Delta V=0.2 L \quad \Delta T=-10 \mathrm{~K} \\
& P=8.25 T\left(V^{-1}\right) \\
& \begin{aligned}
\Delta P & \approx d P
\end{aligned}=\frac{\partial P}{\partial T} d T+\frac{\partial P}{\partial V} d V \\
& \\
& \\
& =8.25\left(V^{-1}\right) d T+(-8.25) T\left(V^{-2}\right) \\
& \\
& \\
& =8.25\left(\frac{1}{11}\right)(-10)-8.25(310)\left(\frac{1}{11^{2}}\right) \\
& \\
&
\end{aligned} \begin{aligned}
& \Delta .25\left(\frac{-420}{121}\right) \\
& \approx-28.63636 \quad \mathrm{k} \cdot \mathrm{~Pa}
\end{aligned}
$$

