§2.11 Lagrange Multipliers

Example (a). Find the extreme values of $f(x, y)=2 x+6 y$ on the boundary of the region D described by the equation $x^{2}+y^{2}=10$.

This example is the Step 2 of finding absolute maximum or minimum.

Example (b). A rectangular made from $12 m$ (meters) of line. Find the maximum area of such a rectangle.

Maximize $f(x, y)=x y$ when $x+y=6$.

Example (c). Find the shortest distance from the point $(1,1)$ to the circle $x^{2}+y^{2}=1$.

Example ($\mathbf{a}, \mathbf{b}, \mathbf{c}$). Find extreme value of a function $z=f(x, y)$ subject to a constraint $g(x, y)=k$. Here, k is a given number.

Draw the level curves for the functions $z=$ $f(x, y)$:

The Extreme Value is $f(x, y)=6$.
$g(x, y)=k$ and $f(x, y)=6$ have the same tangent line.
Their normal vectors ∇f and ∇g have the same direc-
 tion.

Motivation question: Find extreme value of a function $z=f(x, y)$ subject to a constraint $g(x, y)=k$. Here, k is a given number.

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y and λ such that

$$
\nabla f(x, y)=\lambda \nabla g(x, y)
$$

and

$$
g(x, y)=k
$$

(2) Evaluate f at all points (x, y) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.
Equations in (1) can be written as

$$
\left\{\begin{array}{l}
f_{x}=\lambda g_{x} \\
f_{y}=\lambda g_{y} \\
g(x, y)=k
\end{array}\right.
$$

There is a technical assumption for Lagrange Multiplier: for all (x, y) such that $g(x, y)=k$, we need $\nabla g(x, y) \neq \overrightarrow{0}$.

Example 1. Find the extreme values of $f(x, y)=2 x+6 y$ on the boundary of the region D described by the equation $x^{2}+y^{2}=10$.

$$
\left.\begin{array}{ll}
\text { Sep } \mid: & \nabla f(x, y)=\langle 2,6\rangle \\
& \nabla g(x, y)=\langle 2 x, 2 y\rangle \\
& \nabla f=\lambda \nabla g \Rightarrow\left\{\begin{array} { l }
{ 2 = 2 \lambda x } \\
{ 6 = 2 \lambda y }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \lambda x = 1 } \\
{ \lambda y = 3 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{1}{\lambda} \\
y=\frac{3}{\lambda}
\end{array}\right.\right.\right. \\
\quad \text { together with } x^{2}+y^{2}=10
\end{array} \right\rvert\, \begin{aligned}
& \left(\frac{1}{\lambda}\right)^{2}+\left(\frac{3}{\lambda}\right)^{2}=10 \Rightarrow \frac{10}{\lambda^{2}}=10 \Rightarrow \lambda^{2}=1 \Rightarrow \lambda= \pm 1
\end{aligned}
$$

Step 2: possible extreme points are $(1,3),(-1,-3)$
Compute $f(1,3)=20$
$f(-1,-3)=-20$
So $f(x, y)=2 x+6 y$ on constraint $x^{2}+y^{2}=10$
has maximum value $f(1,3)=20$
minimum value $f(-1,-3)=-20$

Example 2. Find the extreme values of $f(x, y)=x^{2}+2 y^{2}+2$ on the circle equation $x^{2}+y^{2}=1$.

$$
\begin{aligned}
& \text { Step } 1: \nabla f(x, y)=\langle 2 x, 4 y\rangle \\
& \nabla g(x, y)=\langle 2 x, 2 y\rangle \\
& \text { Lagrange multiplier: } \begin{array}{ll}
2 x=2 \lambda x \Rightarrow x(\lambda-1)=0 \Rightarrow x=0 \\
4 y=2 \lambda y \Rightarrow y(\lambda-2)=0 \Rightarrow \text { or } \lambda=1 \\
\cdot x^{2}+y^{2}=1 & \text { or } \lambda=0
\end{array}
\end{aligned}
$$

- If $x=0$ then $y= \pm 1 . \Rightarrow$ possible extreme points
- If $\lambda=1$, then $y=0$, then $x= \pm 1$

$$
\Rightarrow \text { possible extreme ports }
$$

Step 2

Remark: there is a easier way to find the result for this particular example.

Motivation question: Find extreme value of a function $u=f(x, y, z)$ subject to a constraint $g(x, y, z)=k$. Here, k is a given number.

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y, z and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

and

$$
g(x, y, z)=k
$$

(2) Evaluate f at all points (x, y, z) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.
Equations in (1) can be written as

$$
\left\{\begin{array}{l}
f_{x}=\lambda g_{x} \\
f_{y}=\lambda g_{y} \\
f_{z}=\lambda g_{z} \\
g(x, y, z)=k
\end{array}\right.
$$

Example 3. A rectangular box is to be made from $24 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

The volume is $V=f(x, y, z)=x y z$. The constraint $2 x y+2 y z+2 x z=24$, or $g(x, y, z)=$ $x y+y z+x z=12$.

Step 1: $\nabla f=\langle y z, x z, x y\rangle \quad \nabla g=\langle y+z, x+z, x+y\rangle$
Lagrange multipliers:

$$
\left\{\begin{array} { l }
{ y z = \lambda (y + z) } \\
{ x z = \lambda (x + z) } \\
{ x y = \lambda (x + y) } \\
{ x y + y z + x z = 1 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x y z=\lambda(x y+x z) \\
x y z=\lambda(x y+y z) \\
x y z=\lambda(x z+y z) \\
x y+y z+x z=12
\end{array}\right.\right.
$$

observe: $\lambda \neq 0$.

- The first two equations give $x z=y z \Rightarrow x=y$
- The first and third equations give $x y=y z \Rightarrow x=z$
- The second and third equations give $x y=x z \Rightarrow y=z$
plugin to constraint $g(x, y, z)=12 \Rightarrow 3 x^{2}=12 \Rightarrow x^{2}=4 \Rightarrow x=2$.
So the only passible pint is $(2,2,2)$.
The Maximum volume is $V=f(2,2,2)=8 m^{3}$.

Example 4. (Compare with example (c)) Find the shortest distance from the point $(1,2,3)$ to the sphere

$$
x^{2}+y^{2}+z^{2}=4
$$

- Distance function $d=\sqrt{(x-1)^{2}+(y-2)^{2}+(z-3)^{2}}$
- We only find extreme value on $d^{2}=(x-1)^{2}+\left(y_{2}\right)^{2}+(2-3)^{2}$.

So. Let $f(x, y, z)=(x-1)^{2}+(y-2)^{2}+(z-3)^{2}$ with conssisint
$g(x, y, z)=x^{2}+y^{2}+z^{2}=4$.
$S_{\text {te }} \mid: \quad \nabla f=\langle 2(x-1), 2(y-z), 2(z-3)\rangle \quad \nabla g=\langle 2 x, 2 y, 2 z\rangle$
Lagrange Multipliers: $\left\{\begin{array}{l}2(x-1)=2 \lambda x \Rightarrow x=\frac{1}{1-\lambda} \\ 2(y z)=2 \lambda y \Rightarrow y=\frac{2}{1-\lambda} \\ 2(z-3)=2 \lambda z \Rightarrow z=\frac{3}{1-\lambda} \\ x^{2}+y^{2}+z^{2}=4\end{array}\right.$
$\Rightarrow\left(\frac{1}{1-\lambda}\right)^{2}+\left(\frac{2}{1-\lambda}\right)^{2}+\left(\frac{3}{1-\lambda}\right)^{2}=4 \quad \Rightarrow(1-\lambda)^{2}=\frac{14}{4} \quad \Rightarrow 1-\lambda= \pm \frac{\sqrt{14}}{2}$
$\begin{aligned} \Rightarrow 1=1 \pm \frac{\sqrt{4}}{2} \quad & \left\{\begin{array}{l}x=\frac{2}{\sqrt{14}} \\ y=\frac{4}{\sqrt{14}} \\ z=\frac{6}{\sqrt{4}}\end{array} \text { and }\left\{\begin{array}{l}x=-\frac{2}{\sqrt{14}} \\ y=-\frac{4}{\sqrt{14}} \\ z=-\frac{6}{\sqrt{4}}\end{array}\right.\right. \\ & \text { crest pirterest pint to }(1,2,3) \\ \text { to }(1,2,3) & \text { far }\end{aligned}$
Step 2: Evaluate these two ports ${ }^{\text {on }}$ on $d=\sqrt{(x-1)^{2}+(g-2)^{2}+((-3))^{2}}$.

Motivation Question. Find extreme values of a function $u=f(x, y, z)$ subject to two constraints $g(x, y, z)=k$ and $h(x, y, z)=c$. Here, k and c is are given numbers.
(Temperature example)

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y, z and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)
$$

and

$$
g(x, y, z)=k
$$

and

$$
h(x, y, z)=c
$$

(2) Evaluate f at all points (x, y, z) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Equations in (1) can be written as

$$
\left\{\begin{array}{l}
f_{x}=\lambda g_{x}+\mu h_{x} \\
f_{y}=\lambda g_{y}+\mu h_{y} \\
f_{z}=\lambda g_{z}+\mu h_{z} \\
g(x, y, z)=k \\
h(x, y, z)=c
\end{array}\right.
$$

Example 5. Find the extreme values of $f(x, y, z)=x y+y z$ subject to two constraints, $x y=1$, and $y^{2}+z^{2}=9$.

$$
\begin{aligned}
& \text { Step 1: } \\
& \nabla f=\langle y, x+z, y\rangle \quad \nabla g=\langle y, x, 0\rangle \quad \nabla h=\langle 0,2 y, 2 z\rangle \\
& \text { Lagrange multiplier } \quad \nabla f=\lambda \nabla g+\mu \nabla h \\
& \left\{\begin{array} { l }
{ y = \lambda y \Rightarrow \lambda = 1 } \\
{ x + z = \lambda x + 2 \mu y } \\
{ y = 2 \mu z } \\
{ x y = 1 } \\
{ y ^ { 2 } + z ^ { 2 } = 9 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \text { since } y \neq 0 } \\
{ \frac { x + z = x + 2 \mu y } { y = 2 \mu z } } \\
{ x y = 1 } \\
{ y ^ { 2 } + z ^ { 2 } = 9 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 \mu=\frac{z}{y} \\
2 \mu=\frac{y}{z}
\end{array} \Rightarrow \frac{z}{y=\frac{y}{z}} \begin{array}{l}
y^{2}=z^{2}
\end{array}\right.\right.\right. \\
& \left\{\begin{array}{l}
y^{2}=z^{2} \\
y^{2}+z^{2}=9
\end{array} \Rightarrow 2 z^{2}=9 \quad z= \pm \frac{3}{\sqrt{2}}\right. \\
& \Rightarrow y= \pm \frac{3}{\sqrt{2}} \\
& x y=1 \Rightarrow x=\frac{1}{y} \Rightarrow x= \pm \frac{\sqrt{2}}{3}
\end{aligned}
$$

All possible points are $\left(\pm \frac{\sqrt{2}}{3}, \pm \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ and $\left(\pm \frac{\sqrt{2}}{3}, \pm \frac{3}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)$
Plug in all points $f\left(\pm \frac{\sqrt{2}}{3}, \pm \frac{3}{\sqrt{2}}, \pm \frac{3}{\sqrt{2}}\right)=1+\frac{9}{2}=\frac{11}{2}$

$$
f\left(\pm \frac{\sqrt{2}}{3}, \pm \frac{3}{\sqrt{2}}, \mp \frac{3}{\sqrt{2}}\right)=1-\frac{9}{2}=-\frac{7}{2}
$$

