§2.11 Lagrange Multipliers

Example (a). Find the extreme values of f(x, y) = 2x + 6y on the boundary of the region D described by the equation $x^2 + y^2 = 10$.

This example is the Step 2 of finding absolute maximum or minimum.

Example (b). A rectangular made from 12 m (meters) of line. Find the maximum area of such a rectangle.

Example (c). Find the shortest distance from the point (1,1) to the circle $x^2 + y^2 = 1$.

Example (a,b,c). Find extreme value of a function z = f(x, y) subject to a constraint g(x, y) = k. Here, k is a given number.

Draw the level curves for the functions z = f(x, y):

The Extreme Value is f(x, y) = 6.

g(x, y) = k and f(x, y) = 6 have the same tangent line.

Their normal vectors ∇f and ∇g have the same direction.

Motivation question: Find extreme value of a function z = f(x, y) subject to a constraint g(x, y) = k. Here, k is a given number.

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y and λ such that

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$

and

q(x, y) = k

(2) Evaluate f at all points (x, y) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Equations in (1) can be written as

 $\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g(x, y) = k \end{cases}$

There is a technical assumption for Lagrange Multiplier: for all (x, y) such that g(x, y) = k, we need $\nabla g(x, y) \neq \vec{0}$.

Example 1. Find the extreme values of f(x, y) = 2x + 6y on the boundary of the region D described by the equation $x^2 + y^2 = 10$.

Step 1:
$$\nabla f(x,y) = \langle 2, 6 \rangle$$

 $\nabla g(x,y) = \langle 2x, 2y \rangle$
 $\nabla f = \lambda \nabla g \Rightarrow \begin{cases} 2 = 2\lambda x \\ 6 = 2\lambda y \end{cases} \Rightarrow \begin{cases} \lambda x = 1 \\ \lambda y = 3 \end{cases} \Rightarrow \begin{cases} x = \frac{1}{\lambda} \\ y = 3 \end{cases}$
 $together with x^2 + y^2 = 10$
 $\Rightarrow (\frac{1}{\lambda})^2 + (\frac{3}{\lambda})^2 = 10 \Rightarrow \frac{10}{\lambda^2} = 10 \Rightarrow \lambda^2 = [\Rightarrow \lambda^2 = 1 \end{cases}$
Step 2: poundle extreme publics are $(1, 3), (-1, -3)$
Compute $f(1, 3) = 20$
 $f(4, -3) = -20$
So $f(x, y) = 2x + 6y$ on constensint $x^2 + y^2 = 10$
her maximum value $f(1, 3) = 20$
minimum Value $f(-1, -3) = -20$

Example 2. Find the extreme values of $f(x, y) = x^2 + 2y^2 + 2$ on the circle equation $x^2 + y^2 = 1$.

Remark: there is a easier way to find the result for this particular example.

Motivation question: Find extreme value of a function u = f(x, y, z) subject to a constraint g(x, y, z) = k. Here, k is a given number.

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y, z and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

and

$$q(x, y, z) = k$$

(2) Evaluate f at all points (x, y, z) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f. Equations in (1) can be written as

$$\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ f_z = \lambda g_z \\ g(x, y, z) = k \end{cases}$$

Example 3. A rectangular box is to be made from 24 m^2 of cardboard. Find the maximum volume of such a box.

The volume is V = f(x, y, z) = xyz. The constraint 2xy + 2yz + 2xz = 24, or g(x, y, z) = xy + yz + xz = 12. Step 1: $\nabla f = \langle y_2, x_3, xy \rangle$ $\nabla g = \langle y_1z, x_2, x_4 \rangle$ Lagrange multipliers: $\begin{cases} y_2 = \lambda(y_1+z) \\ x_2 = \lambda(x+y) \\ x_3 + y_2 + xz = 12 \end{cases}$ $\forall y_1 = \lambda(x+y) \\ \forall y_1 + y_2 + xz = 12 \end{cases}$ $\forall y_2 = \lambda(xy + y_2) \\ \forall y_$ **Example 4.** (Compare with example (c)) Find the shortest distance from the point (1, 2, 3) to the sphere

 $x^2 + y^2 + z^2 = 4$

Distance function
$$d = \sqrt{(x+1)^2 + (y+2)^2 + (y+3)^2}$$

we only find extreme value on $d^2 = (x+1)^2 + (y+2)^2 + (y+3)^2$.
So. Let $f(x, y, z) = (x+1)^2 + (y+2)^2 + (y+3)^2$ with constraint
 $g(x, y, y) = x^2 + y^2 + y^2 = y^2$.
Step 1: $\nabla f = \langle 2(x+1), 2(y-2), 2(z-3) \rangle$ $\nabla g = \langle 2x, 2y, 2y, 2z \rangle$
Lagrange Multipliers: $\begin{cases} 2(x+1)=2\lambda Y \implies x=\frac{1}{1-\lambda} \\ 2(y+2)=2\lambda y \implies y=\frac{2}{1-\lambda} \\ 2(z+3)=2\lambda z \implies z=\frac{3}{1-\lambda} \\ \frac{2}{x^2+y^2+z^2=4} \end{cases}$
 $\Rightarrow \left(\frac{1}{1-\lambda}\right)^2 + \left(\frac{3}{1-\lambda}\right)^2 = 4 \implies (-\lambda)^2 = \frac{14}{4} \implies 1-\lambda = \pm \frac{144}{2}$
 $\Rightarrow \lambda = 1 \pm \frac{144}{2} \implies \begin{cases} x = \frac{2}{144} \\ y = \frac{2}{144} \\ z = \frac{6}{144} \\ z = -\frac{6}{144} \\ z = -\frac{6}$

Motivation Question. Find extreme values of a function u = f(x, y, z) subject to two constraints g(x, y, z) = k and h(x, y, z) = c. Here, k and c is are given numbers.

(Temperature example)

Theorem. Method of Lagrange Multipliers:

(1) Find all values of x, y, z and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$$

and

g(x, y, z) = k

and

$$h(x, y, z) = c$$

(2) Evaluate f at all points (x, y, z) from step (1). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Equations in (1) can be written as

 $\begin{cases} f_x = \lambda g_x + \mu h_x \\ f_y = \lambda g_y + \mu h_y \\ f_z = \lambda g_z + \mu h_z \\ g(x, y, z) = k \\ h(x, y, z) = c \end{cases}$

Example 5. Find the extreme values of f(x, y, z) = xy + yz subject to two constraints, xy = 1, and $y^2 + z^2 = 9$.

$$\begin{array}{l} \begin{array}{c} \underline{ftp}1:\\ \nabla f=\langle \underline{4}, \underline{x} + \underline{3}, \underline{4} \rangle \quad \nabla g=\langle \underline{4}, \underline{x}, o \rangle \quad \nabla h=\langle o, 2\underline{4}, 2\underline{s} \rangle \\ \hline \\ Lagrange multiplier \quad \nabla f=\lambda \nabla g +\mu \nabla h \\ \begin{cases} \underline{4}=\lambda \underline{3} \quad \Longrightarrow \quad \lambda=1 \\ \underline{3}=\lambda \underline{3} \quad \Longrightarrow \quad \lambda=1 \\ \underline{4}=2\mu \underline{2} \\ \underline{3}=2\mu \underline{2} \\ \underline{3}=1 \\ \underline{4}=2\mu \underline{2} \\ \underline{3}=1 \\ \underline{4}=2\mu \underline{2} \\ \underline{3}=1 \\ \underline{3}=2\mu \underline{2} \\ \underline{3}=2\mu \underline{3} \\ \underline{3$$