§2.1 Partial Derivatives

Review: The derivative of $f(x)$ is

$$
\frac{d}{d x}(f(x))=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Geometrically, $f^{\prime}(x)$ is the slope of the tangent line.

Definition.

The partial derivative of $f(x, y)$ with respect to x at (a, b) is

$$
f_{x}(a, b)=g^{\prime}(a)
$$

where $g(x)=f(x, b)$ is the trace of $f(x, y)$ in plane $y=b$.
That is

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

The partial derivative of $f(x, y)$ with respect to y at (a, b) is

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}
$$

Definition.

The partial derivative of $f(x, y)$ with respect to x (and to y)

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Notations: If $z=f(x, y)$,

$$
f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=D_{x} f=f_{1}=D_{1} f
$$

Remark: Definition of partial derivative can be used as estimating the partial derivative.

For example, suppose we know $f(1,2), f(1,2.15)$ and $f(1.1,2)$, then we can estimate the partial derivative

$$
f_{x}(1,2) \approx \frac{f(1.1,2)-f(1,2)}{0.1} \text { and } f_{y}(1,2) \approx \frac{f(1,2.15)-f(1,2)}{0.15}
$$

Application: This is useful in image processing(edge detection) for a matrix of given data.

Rule for finding partial derivative:

To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x. Similarly for f_{y}.

Example 1. If $f(x, y)=x^{3}+x^{2} \sin y-x e^{y}$, find $f_{x}(1,2)$ and $f_{y}(1,2)$.

$$
\begin{array}{ll}
f_{x}=3 x^{2}+2 x \sin y-e^{y} & f_{x}(1,2)=3+2 \sin 2-e^{2} \\
f_{y}=x^{2} \cos y-x e^{y} & f_{y}(1,2)=\cos 2-e^{2}
\end{array}
$$

Example 2. If $f(x, y)=\sqrt{x^{2}+y^{2}}$, find $f_{x}(x, y)$ and $f_{y}(x, y), f_{x}(1,2)$.

Rewrite $f(x, y)=\sqrt{x^{2}+y^{2}}=\left(x^{2}+y^{2}\right)^{1 / 2}$.

$$
\begin{aligned}
f_{x} & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} \cdot 2 x \quad \text { Chain Rule } \\
f_{y} & =\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} \cdot 2 y \\
f_{x}(1,2) & =1 / \sqrt{5} .
\end{aligned}
$$

Example 3. If $z=f(x, y)$ is defined implicitly as

$$
x^{3}+y^{3}+z^{3}+2 x y z=3,
$$

find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$
\begin{aligned}
& \quad \text { Take } \frac{\partial}{\partial x} \text { of the equation } \\
& 3 x^{2}+3 z^{2} \frac{\partial z}{\partial x}+2 y z+2 x y \frac{\partial z}{\partial x}=0 \\
& \Rightarrow \quad \frac{\partial z}{\partial x}=-\frac{3 x^{2}+2 y z}{3 z^{2}+2 x y} \\
& \text { Take } \frac{\partial}{\partial y} \text { of the equation } \\
& 3 y^{2}+3 z^{2} \frac{\partial z}{\partial y}+2 x z+2 x y \frac{\partial z}{\partial y}=0 \\
& \Rightarrow \frac{\partial z}{\partial y}=-\frac{3 y^{2}+2 x z}{3 z^{2}+2 x y}
\end{aligned}
$$

Example 4. If $f(x, y)=\arccos x+x \sin ^{2}(3 x+y)$, find $f_{x}(0,0) f_{x}(x, y)$ and $f_{y}(x, y)$.

$$
\begin{aligned}
& f_{x}(x, y)=-\frac{1}{\sqrt{1-x^{2}}}+\sin ^{2}(x+y)+6 x \sin (3 x+y) \cos (3 x+y) \\
& f_{y}(x, y)=2 x \sin (3 x+y) \cos (3 x+y) \\
& f_{x}(0,0)=-1
\end{aligned}
$$

Geometric interpretation of partial derivatives

The partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ are derivative of the traces of $z=f(x, y)$ in the planes $y=b$ and $x=a$.

The partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ can be interpreted geometrically as the slopes of the tangent lines at (a, b) to the traces(cross-sections) $C_{1}(z=f(x, b))$ and $C_{2}(z=f(a, y))$ of S in the planes $y=b$ and $x=a$.

Second partial derivatives

The second partial derivatives of $z=f(x, y)$ are denoted by

$$
\begin{aligned}
&\left(f_{x}\right)_{x}=f_{x x} \\
&=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \\
&\left(f_{x}\right)_{y}=f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}
\end{aligned}
$$

$$
\begin{gathered}
\left(f_{y}\right)_{x}=f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \\
\left(f_{y}\right)_{y}=f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}
\end{gathered}
$$

Example 5. Find the second partial derivative $f_{x y}$ of $f(x, y)=x^{2}+x y^{3}+\sin (x y)$.

$$
\begin{aligned}
& \quad f_{x}=2 x+y^{3}+\cos (x y) \cdot y \quad f_{y}=3 x y+\cos (x y) x \\
& f_{x x}=2-\sin (x y) y^{2} \\
& f_{x y}=3 y^{2}-\sin (x y) x y+\cos x y \\
& f_{y x}=3 y^{2}-\sin (x y) x y+\cos x y \\
& f_{y y}=6 x y-\sin (x y) x^{2}
\end{aligned}
$$

Theorem. (Clairaut's Theorem)

Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

The Gradient Vector

Definition.

The gradient of a function $f(x, y)$ is the vector function ∇f by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}
$$

The notation ∇ is pronounced Del or nabla.
The formula for the directional derivative in the direction of $\vec{u}=\langle a, b\rangle$

$$
D_{\vec{u}} f(x, y)=\nabla f(x, y) \cdot \vec{u}
$$

or $D_{\vec{u}} f=\nabla f \cdot \vec{u}$ for short.

Example 6. (1) Find the gradient of $f(x, y)=\sin (x y)+e^{y}$ at $(0,1)$.

$$
\begin{aligned}
& \nabla f(x, y)=\left\langle y \cos (x y), x \cos (x y)+e^{y}\right\rangle \\
& \nabla f(0,1)=\langle 1, e\rangle
\end{aligned}
$$

(2) Find the directional derivative of $f(x, y)$ at $(0,1)$ in the direction of the vector $\vec{v}=2 \vec{i}+3 \vec{j}$.

$$
\begin{aligned}
\vec{u}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{4+9}}\langle 2,3\rangle & =\left\langle\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right\rangle \\
D_{\vec{u}} f & =\langle 1,3\rangle \cdot\left\langle\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right\rangle=\frac{2}{\sqrt{13}}+\frac{3 e}{\sqrt{13}}=\frac{2+3 e}{\sqrt{13}}
\end{aligned}
$$

