§2.0 Multi-variable functions and Limits

1. Functions of several variables

Definition.

A function of two variables is a rule that assigns to each ordered pair $(x, y) \in D \subset \mathbb{R}^{2}$ of real numbers a unique $f(x, y) \in \mathbb{R}$. The set D is the domain of and its range is the set $\{f(x, y) \mid(x, y) \in D\}$.

Example 1. The temperature T at a point (x, y) on the surface of the earth at any given time depends on the longitude x and latitude y of the point.

Example 2. Let $f(x, y)=\frac{\sqrt{y-x}}{y}$. Evaluate $f(2,3)$, find and sketch the domain.

$$
\begin{aligned}
& f(2,3)=\frac{\sqrt{3-2}}{3}=\frac{1}{3} \\
& \left\{\begin{array}{l}
y-x \geqslant 0 \\
y \neq 0
\end{array}\right. \\
& \text { or }\left\{\begin{array}{l}
y \geqslant x \\
y \neq 0
\end{array}\right.
\end{aligned}
$$

Example 3. Let $f(x, y)=\frac{\sqrt{x^{2}-y}}{x^{2}-4}$. Evaluate $f(3,2)$, find and sketch the domain.

$$
f(3,2)=\frac{\sqrt{9-2}}{9-4}=\frac{\sqrt{7}}{5}
$$

domain $\left\{\begin{array}{l}x^{2}-y \geqslant 0 \\ x^{2}-4 \neq 0\end{array}\right.$

$$
\text { or }\left\{\begin{array}{l}
y \leqslant x^{2} \\
x \neq \pm 2
\end{array}\right.
$$

Definition.

The graph of $f(x, y)$ is the set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $z=f(x, y)$ and $(x, y) \in D$. That is

$$
\left\{(x, y, f(x, y)) \in \mathbb{R}^{3} \mid(x, y) \in D\right\}
$$

The graph of $f(x, y)$ is a surface above/below the domain.

Example 4. Sketch the graph of the function $f(x, y)=6-2 x-3 y$.

Intersect with x-axis $(y=z=0) \quad(3,0,0)$
Intersect with y-axis $(x=z=0) \quad(0,2,0)$
Intersect with z-axis $(x=y=0) \quad(0,0,6)$

Example 5. Sketch the graph of the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$.

$$
\begin{gathered}
z=\sqrt{4-x^{2}-y^{2}} \\
z^{2}=4-x^{2}-y^{2} \\
x^{2}+y^{2}+z^{2}=2^{2} \\
z \geqslant 0 .
\end{gathered}
$$

The domain is $4-x^{2}-y^{2} \geq 0$, or equivalently, $x^{2}+y^{2} \leq 2^{2}$. The range is $0 \leq z \leq 2$.

Example 6. Find the domain and range, and sketch the graph of the function $f(x, y)=$ $x^{2}+9 y^{2}$.
$z=x^{2}+9 y^{2}$ is an elliptic paraboloid. The domain is \mathbb{R}^{2} and the range is $z \geq 0$.

Definition.

The level curves of a function f of two variables are the curves with equations $f(x, y)=$ c, where is c a constant (in the range of f).

The level curves $f(x, y)=c$ are just the traces of the graph of f in the horizontal plane $z=c$ projected down to the $x y$-plane.

One common example of level curves (contour map) occurs in topographic maps of mountainous regions.

Example 7. A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

Example 8. Draw a contour map of the function showing several level curves. $f(x, y)=x e^{4 y}$.

$$
x e^{4 y}=c \text { implies } e^{4 y}=\frac{c}{x} . \text { So, } y=\frac{1}{4} \ln \left(\frac{c}{x}\right) .
$$

A function of three variables.
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is denoted by $f(x, y, z)$.
For example, $f(x, y, z)=\frac{\sqrt{x^{2}+y^{2}+z^{2}}}{x}$
More generally, one can define a function of multi-variables: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denoted by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
For example, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$

2. Limits and Continuity

Definition.

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the limit of $f(x, y)$ as (x, y) approaches (a, b) is L and we write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every number $\epsilon>0$, there is a corresponding number $\delta(\epsilon)>0$ such that if $(x, y) \in D$ and $0<\operatorname{dist}((x, y),(a, b))<\delta$ then

$$
|f(x, y)-L|<\epsilon .
$$

Here, $\operatorname{dist}((x, y),(a, b))=\sqrt{(x-a)^{2}+(y-b)^{2}}$.

This is the precise definition for limit of a function, and referred as $\epsilon-\delta$ definition. It is not required for a Calculus class. More details about the precise foundation of calculus is available on a Mathematical Analysis class or Real Analysis class.

From definition, it means that we need to approach (a, b) from any direction.

Example 9. $\lim _{(x, y) \rightarrow(0,0)} e^{-x y} \sin (x+y)=0$
Example 10. $\lim _{(x, y) \rightarrow(1,2)} \frac{x+y^{2}}{x^{2}-y^{2}}=\frac{5}{-3}$

Definition.

A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Example 11. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ and $\lim _{(x, y) \rightarrow(1,1)} f(x, y)$ for $f(x, y)=\frac{x^{4}-y^{4}}{x-y}$

$$
\begin{array}{rlrl}
f(x, y) & =\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{x-y} & & \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 \\
& =\frac{(x-y)(x+y)\left(x^{2}+y^{2}\right)}{(x-y)} & \lim _{(x, y) \rightarrow(1,1)} f(x, y)=2 \times 2=4 \\
& =(x+y)\left(x^{2}+y^{2}\right) & &
\end{array}
$$

Example 12. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

- Approach $(0,0)$ along x-axis $(y=0)$

$$
f(x, 0)=\frac{x^{2}}{x^{2}}=1 \text { for all } x \neq 0
$$

- Approach $(0,0)$ along y-axis $(x=0)$

$f(0, y)=\frac{-y^{2}}{y^{2}}=-1$ for al $y \neq 0$,
f has different limits along two different lines
Then. $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.

Example 13. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$

- Approach $(0,0)$ along $x-a x i s(y=0)$

$$
f(x, 0)=0 \text { for } x \neq 0 \text {. }
$$

- Approach $(0,0)$ along $y \rightarrow$ axis $(x>0)$

$$
f(0, y)=0 \quad \text { for } y \neq 0
$$

- Approach (0,0) along $x=y^{2}$

$$
f(x, y)=\frac{y^{2} y^{2}}{y^{4}+y^{4}}=\frac{1}{2}
$$

So. lime $f(x, y)$ does not exist.

$$
(x, y) \rightarrow(0,0)
$$

Example 14. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$

Example: $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$

$$
\begin{aligned}
& =\frac{\sin t}{t} \quad \text { where } t=x^{2}+y^{2} \geqslant 0 \\
\lim _{(x, y) \rightarrow(0,0)} f(x, y) & =\lim _{t \rightarrow 0+} \frac{\sin t}{t}=1 \quad \text { L'Hospital's Rule }
\end{aligned}
$$

