§2.0 Multi-variable functions and Limits

1. Functions of several variables

Definition.

A function of two variables is a rule that assigns to each ordered pair $(x, y) \in D \subset \mathbb{R}^2$ of real numbers a unique $f(x, y) \in \mathbb{R}$. The set D is the **domain** of and its **range** is the set $\{f(x, y) | (x, y) \in D\}$.

Example 1. The temperature T at a point (x, y) on the surface of the earth at any given time depends on the longitude x and latitude y of the point.

Example 2. Let $f(x,y) = \frac{\sqrt{y-x}}{y}$. Evaluate f(2,3), find and sketch the domain.

Example 3. Let $f(x,y) = \frac{\sqrt{x^2 - y}}{x^2 - 4}$. Evaluate f(3,2), find and sketch the domain.

Definition.

The **graph** of f(x, y) is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that z = f(x, y) and $(x, y) \in D$. That is $\{(x, y, f(x, y)) \in \mathbb{R}^3 | (x, y) \in D\}$

The graph of f(x, y) is a surface above/below the domain.

Example 4. Sketch the graph of the function f(x, y) = 6 - 2x - 3y.

Example 5. Sketch the graph of the function $f(x, y) = \sqrt{4 - x^2 - y^2}$.

Example 6. Find the domain and range, and sketch the graph of the function $f(x, y) = x^2 + 9y^2$.

Definition.

The **level curves** of a function f of two variables are the curves with equations f(x, y) = c, where is c a constant (in the range of f).

The level curves f(x, y) = c are just the traces of the graph of f in the horizontal plane z = c projected down to the xy-plane.

One common example of level curves (contour map) occurs in topographic maps of mountainous regions.

Example 7. A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

Example 8. Draw a contour map of the function showing several level curves. $f(x, y) = xe^{4y}$.

A function of three variables.

 $f:\mathbb{R}^3\to\mathbb{R}$ is denoted by f(x,y,z).

For example, $f(x, y, z) = \frac{\sqrt{x^2 + y^2 + z^2}}{x}$

More generally, one can define a function of multi-variables: $f : \mathbb{R}^n \to \mathbb{R}$, denoted by $f(x_1, x_2, \dots, x_n)$. For example, $f(x_1, x_2, \dots, x_n) = x_1 x_2 \cdots x_n$

2. Limits and Continuity

Definition.

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the **limit** of f(x, y) as (x, y) approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every number $\epsilon > 0$, there is a corresponding number $\delta(\epsilon) > 0$ such that if $(x, y) \in D$ and $0 < \text{dist}((x, y), (a, b)) < \delta$ then

$$|f(x,y) - L| < \epsilon.$$

Here, dist $((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$.

This is the precise definition for limit of a function, and referred as $\epsilon - \delta$ definition. It is not required for a Calculus class. More details about the precise foundation of calculus is available on a Mathematical Analysis class or Real Analysis class.

From definition, it means that we need to approach (a, b) from any direction.

Example 9. $\lim_{(x,y)\to(0,0)} e^{-xy} \sin(x+y) = 0$

Example 10. $\lim_{(x,y)\to(1,2)} \frac{x+y^2}{x^2-y^2} = \frac{5}{-3}$

Definition.

A function f of two variables is called **continuous** at (a, b) if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

Example 11. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ and $\lim_{(x,y)\to(1,1)} f(x,y)$ for $f(x,y) = \frac{x^4 - y^4}{x - y}$

Example 12. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ for $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$

Example 13. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ for $f(x,y) = \frac{xy^2}{x^2 + y^4}$

Example 14. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ for $f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$

Example:
$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$

$$= \frac{\sin t}{t} \quad \text{where } t = x^2 + y^2 \ge 0$$

$$\lim_{(X, y) \to (0, 0)} f(x, y) = \lim_{t \to 0+} \frac{\sin t}{t} = 1$$

$$\lim_{(X, y) \to (0, 0)} L^{'} \text{Hospital's Rule}$$