§1．7 Multivariable functions

We have a quick introduction on concepts／terminologies about functions and continuity．More details in MATH 3150 〈Real Analysis〉 class，more generally in MATH 5121 〈Topology〉 class． （If you have difficulty on reading section $\S 1.7$ in the book，do not worry too much．You can be good at in Calculus 3．）

A multivariable function $\vec{f}=\left\langle f_{1}, f_{2}, \ldots, f_{m}\right\rangle$ from \mathbb{R}^{3} to \mathbb{R}^{m} is defined by component func－ tions $f_{i}(x, y, z)$ for $i=1,2, \ldots, m$ ．

The domain of \vec{f} is a subset D of \mathbb{R}^{3} ．（Similarly for \mathbb{R}^{n} ）．
Each f_{i} is a real value multivariable function from \mathbb{R}^{3} to \mathbb{R} ．
For example，a multivariable function f from \mathbb{R}^{3} to \mathbb{R} can be defined as $f(x, y, z)=e^{x}+y^{3}+\ln z$ ． In this function，$f(1,2,1)=e+8$ is a real number．The domain is $\{(x, y, z \mid z>0)\}$
level set where $f(x, y, z)=b$ is the set of points (x, y, z) such that $f(x, y, z)=b$ ．
Example 1．The level set of $\vec{f}(x, y)=\left(x^{2}, y^{3}+1, x+y+1\right)$ where $\vec{f}=\overrightarrow{0}$ is $(0,-1)$ ．
A function $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called linear if and only if $L(x, y, z)=a x+b y+c z$ for some real numbers a, b, c ．
A function $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called affine linear if and only if $L(x, y, z)=a x+b y+c z+d$ for some real numbers a, b, c, d ．
A function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if and only if each component function is linear．
Example 2．$F(x, y)=(3 x-y, x+y,-6 x+2 y-1)$ is an affine linear function．
An elementary function is finite addition，subtraction，multiplication，division，or composi－ tion of $x^{a}, b^{x}, \ln (z), \sin y, \ldots$

For example，$f(x, y, z)=\frac{e^{x}+y^{3}+\ln z}{\tan \left(x+y^{2}\right)}$ is an elementary function from \mathbb{R}^{2} to \mathbb{R}^{3} ．
All elementary functions are continuous．

Not all functions are continuous．

Theorem．Continuity

If $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous，then
1．For every open subset $U \subset \mathbb{R}^{m}$ ，the set $\vec{f}^{-1}(U)$ is open in \mathbb{R}^{n} ．
2．For every closed subset $C \subset \mathbb{R}^{m}$ ，the set $\vec{f}^{-1}(C)$ is closed in \mathbb{R}^{n} ．

In fact，if one of the statement is true，then \vec{f} is continuous．
The intersection of a finite number of open subsets is open，and the intersection of any number of closed subsets is closed．

Example 3. Open balls and closed balls in $\mathbb{R}^{1}, \mathbb{R}^{2}$ and \mathbb{R}^{3}.

In \mathbb{R}^{3}, let $P=(a, b, c)$ be the center of the ball.
Open balls: $B(P, r)=\left\{(x, y, z) \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2}<r^{2}\right\}$.
Closed balls: $\overline{B(P, r)}=\left\{(x, y, z) \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq r^{2}\right\}$.
Boundary: $\overline{B(P, r)}=\left\{(x, y, z) \mid(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}\right\}$.

Example 4. $f(x, y, z)=x^{2} y+y \sqrt{z}$. The domain of f is

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \geq 0\right\}
$$

which is closed in \mathbb{R}^{3}. All points in domain D satisfying $1 \leq f(x, y, z) \leq 3$ is denoted by $f^{-1}([1,3])$, called the preimage of $[1,3]$. Since $[1,3]$ is closed, the preimage $f^{-1}([1,3])$ is closed in D.

Theorem. Extreme Value Theorem

A continuous function from a compact subset of \mathbb{R}^{n} into \mathbb{R} has both a minimum and maximum value.

In \mathbb{R}^{n}, compact means closed and bounded. (There is a more general definition of compact subset in Topology.)

In particular, when $n=1$, a continuous function on a closed, bounded interval $[a, b]$ has both a minimum value and a maximum value.

Example 5. Let E be the set of those $(x, y, z) \in R^{3}$ such that $x+2 y+z=3$. Then, E is not compact, because it is not bounded.

Example 6. $f(x, y, z)=x^{2}+y^{3}-2 z$, and E is the set of those (x, y, z) such that $x^{2}+y^{2}+z^{2}=4$. Then E is a sphere of radius 2 , which is closed and bounded, so E is compact. Since f is continuous, it achieves its maxima and minima on E.

Theorem. Intermediate Value Theorem

If $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous, then for every connect subset $E \subset \mathbb{R}^{n}$, the set $f(E)$ is connect in \mathbb{R}^{n}.

§1.8 Graphing surfaces

Review: Curves in \mathbb{R}^{2} :

1. circle, $x^{2}+y^{2}=r^{2}$

2. parabola, $y^{2}=4 a x$

3. hyperbola, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

4. ellipse, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$y^{2}=-4 a x$ for $a>0$

$-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Definition.

A cylinder in \mathbb{R}^{3} is a surface that consists of all lines (called rulings) parallel to a given line and pass through a given plane curve. (The equation only includes two variables.)

To Sketch the graph of a surface by hand, we determine x, y, z cross sections of the surface with planes parallel to the coordinate planes. (e.g., z-cross sections are intersections with $z=a$, planes parallel to $x y$-plane.)

Use https://www.geogebra.org/3d to look at those graphs.
Example 1. Sketch the graph of the surface $z=x^{2}$ and $z=y^{2}$.

To study $z=x^{2}$, look at y -cross sections with $y=a$, planes parallel to $x z$-plane.

Example 2. Sketch the graph of the surfaces $x^{2}+y^{2}=4$ and $y^{2}+z^{2}=4$.

To study $x^{2}+y^{2}=4$, look at z-cross sections with $z=a$, planes parallel to $x y$-plane.

Definition.

A quadric surface is the graph of a second-degree equation in three variables x, y and
z. A general equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

With translation and rotation, there are two standard forms:

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \quad \text { or } \quad A x^{2}+B y^{2}+I Z=0
$$

Example 3. (Ellipsoid) Sketch the quadric surface with equation

$$
x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1
$$

$$
\begin{aligned}
& \text { intersect }\left\{\begin{array}{ll}
\text { Substitute } z=0 & \Rightarrow x^{2}+\frac{y^{2}}{9}=1
\end{array} \quad\right. \text { ellipse } \\
& \text { xy-plane } \begin{array}{l}
\text { substitute } z=k
\end{array} \Rightarrow x^{2}+\frac{y^{2}}{9}=1-\frac{k^{2}}{4} \quad \text { ellipse if } 1-\frac{k^{2}}{4}>0 \\
& \text { (or }-2<k<2 \text {) } \\
& \begin{array}{l}
\text { Intersect } \\
y z-p l a n e
\end{array}\left\{\begin{array}{ll}
\text { substitute } x=k, \Rightarrow & y^{2} \\
9
\end{array} \frac{z^{2}}{4}=1-k^{2} \text {. ellipse if }-1<k<1\right.
\end{aligned}
$$

Example 4. (Elliptic paraboloid) Sketch the quadric surface with equation

$$
z=x^{2}+4 y^{2} .
$$

Horizontal

$$
z=x^{2}+4 y^{2}
$$

$$
\begin{aligned}
& \left|\begin{array}{l}
x y \text {-plane } \\
\text { parallel. }
\end{array}\right| z=k \Rightarrow x^{2}+4 y^{2}=k \Rightarrow \text { ellipse if } k>0 \\
& \text { Vertical }
\end{aligned}
$$

Vertical

$$
\left|\begin{array}{c}
y z \text {-plane } \\
\text { pardlel }
\end{array}\right| x=k \Rightarrow z=k^{2}+4 y^{2} \Rightarrow \text { parabola } \quad \begin{aligned}
& \text { parabola } \\
& x z \text {-plane }
\end{aligned}
$$

Example 5. Sketch the quadric surface with equation $z+2=(x-3)^{2}+4(y+2)^{2}$.

Example 6. (Hyperbolic paraboloid) Sketch the quadric surface with equation

$$
z=x^{2}-4 y^{2} .
$$

1. Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

All traces are ellipses.

2. Elliptic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$

Horizontal traces are ellipses.
Vertical traces are parabolas.

2'. Hyperbolic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
Horizontal traces are hyperbolas.
Vertical traces are parabolas.

3. Cone: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$

Horizontal traces are ellipses.
Vertical traces hyperbolas, or pairs or lines.

3'. Hyperboloid1: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1$
Horizontal traces are ellipses.
Vertical traces are hyperbolas.

3". Hyperboloid2: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+1$
Horizontal traces in are ellipses, or a point. Vertical traces are hyperbolas

Example 7. (Hyperboloid of one sheet) Sketch the quadric surface with equation

$$
\frac{x^{2}}{9}+y^{2}-\frac{z^{2}}{4}=1
$$

z-cross sections: Horizontal intersections with $z=a$ give $\frac{x^{2}}{9}+y^{2}=1+\frac{a^{2}}{4}$, which are ellipses.
x-cross sections: Vertical intersections with (parallel $y z$-planes) $x=c$ give $y^{2}-\frac{z^{2}}{4}=$ $1-\frac{a^{2}}{9}$, which are parabolas.
y-cross sections: Vertical intersections with (parallel $x z$-planes) $y=c$ give $\frac{x^{2}}{9}-\frac{z^{2}}{4}=$ $1-a^{2}$, which are parabolas.

Example 8. Identify and sketch the surface $6 x^{2}-y^{2}+3 z^{2}+9=0$

$$
\begin{aligned}
& y^{2}=6 x^{2}+3 z^{2}+9 \\
& \frac{y^{2}}{9}=\frac{x^{2}}{3 / 2}+\frac{z^{2}}{3}+1
\end{aligned}
$$

: Hyperboloid with 2 sheets

Example 9. Classify the quadratic surface $x^{2}+3 z^{2}-4 x-y+7=0$

