§1.6 Functions of a single variable

1. Limits and continuous.

A vector function (or single-variable function into \mathbb{R}^{n}) is a function whose domain is subset of \mathbb{R} and whose range is subset of vectors in \mathbb{R}^{n}.

We study examples when $n=2$ or $n=3$. Higher dimension functions are similarly.

$$
\vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}
$$

The functions $f(t), g(t), h(t)$ are called component functions.
Example 1. $\vec{r}(t)=\left\langle\sqrt{t-1}, t^{2}-t, \ln (4-t)\right\rangle$

The component functions are $f(t)=\sqrt{t-1}, g(t)=t^{2}-t$, and $h(t)=\ln (4-t)$.
For the domain, $t-1 \geq 0$ and $4-t>0$. So, the domain is $1 \leq t<4$.

Definition.

The limit of a vector function is defined by taking the limits of its component functions,

$$
\lim _{t \rightarrow a} \vec{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle .
$$

A vector function $\vec{r}(t)$ is continuous at $t=a$ if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a)$.

Example 2. Find the limit $\lim _{t \rightarrow 0} \vec{r}(t)$ for vector function $\vec{r}(t)=\left\langle\ln (1-t), t^{2}+2, \frac{\sin t}{t}\right\rangle$.

$$
\lim _{t \rightarrow 0} \vec{r}(t)=\left\langle\lim _{t \rightarrow 0} \ln (1-t), \lim _{t \rightarrow 0}\left(t^{2}+2\right), \lim _{t \rightarrow 0} \frac{\sin t}{t}\right\rangle=\langle 0,2,1\rangle .
$$

We used L'Hospital's rule for the last limit.

Definition.

Suppose $\vec{r}(t)$ is continuous on an interval I. Then set of points $(f(t), g(t), h(t))$ in \mathbb{R}^{3} is called a space curve. The equations

$$
x=f(t), y=g(t), z=h(t)
$$

are parametric equations of the curve and t is a parameter.

Example 3. Describe the curve defined by the vector function $\vec{r}(t)=(1+6 t) \vec{i}+(2-3 t) \vec{j}+$ $(3-t) \vec{k}$.

A line passing through $(1,2,3)$ parallel to the vector $\langle 6,-3,-1\rangle$.

Example 4. Find a vector equation (standard parameterization) and parametric equations for the line segment that joins the points $\mathrm{P}(3,-2,4)$ and $\mathrm{Q}(-1,2,4)$.

From §1.4, we know the line segment is

$$
(x, y, z)=P+t(\overrightarrow{P Q})=(3,-2,4)+t(-4,4,0) \text { for } 0 \leq t \leq 1
$$

So, $x(t)=3-4 t, y(t)=-2+4 t, z(t)=4$ for $0 \leq t \leq 1$.

Example 5 (Helix). Sketch the curve whose vector equation is $\vec{r}(t)=\langle\cos t, \sin t, t\rangle$.

Projection onto $x y$-plane is $\langle\cos t, \sin t, 0\rangle$, which is a circle.

Example 6. Find a vector function (parametrization) for the curve of intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=3$ in \mathbb{R}^{3}.

$$
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{2^{2}}=1
$$

Let $\frac{x}{2}=\sin t$ and $\frac{y}{2}=\cos t$ for $0 \leq t \leq 2 \pi$.
So, $x=2 \sin t$ and $y=2 \cos t$.
Substitute to $y+z=3$, we have $2 \cos t+z=3$, which implies $z=3-2 \cos t$.

The intersection has parametric equation

$$
x=2 \sin t ; y=2 \cos t ; z=3-2 \cos t
$$

Example 7. Find the projection of the space curve $\vec{r}(x)=\left\langle t, 2 t, 3 t+2 t^{2}\right\rangle$ onto the coordinate planes.

The projection onto $x y$-plane is $\langle t, 2 t, 0\rangle$.
The projection onto $x z$-plane is $\left\langle t, 0,3 t+2 t^{2}\right\rangle$.
The projection onto $y z$-plane is $\left\langle 0,2 t, 3 t+2 t^{2}\right\rangle$.
Example 8. Find the intersection points of the space curve $\vec{r}(x)=\left\langle t, 2 t, 3 t+2 t^{2}\right\rangle$ and the paraboloid $z=x^{2}+y^{2}$.

Substitute $x=t, y=2 t, z=3 t+2 t^{2}$ to the paraboloid $z=x^{2}+y^{2}$, we have $3 t+2 t^{2}=$ $t^{2}+(2 t)^{2}$. Solve the equation, we have $t=0$ or $t=1$.
For $t=0$, we have an intersection point $(0,0,0)$.
For $t=1$, we have an intersection point $(1,2,5)$.

2. Derivatives and integrals

Definition.

The derivative of a vector function $\vec{r}(t)$ is defined as

$$
\frac{d \vec{r}}{d t}=\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}
$$

The vector $\vec{r}^{\prime}(t)$ is also called the tangent vector to the curve.
The unit tangent vector is defined as

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

Theorem. Computation formula
If $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle=f(t) \vec{i}+g(t) \vec{j}+h(t) \vec{k}$ for differentialble functions $f(t), g(t), h(t)$, then

$$
\vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle=f^{\prime}(t) \vec{i}+g^{\prime}(t) \vec{j}+h^{\prime}(t) \vec{k}
$$

Example 9. (1) Find the derivative of $\vec{r}(t)=\left(t^{2}-2 t^{3}\right) \vec{i}+t e^{1-t} \vec{j}-\sin (3 t) \vec{k}$.
(2) Find the unit tangent vector at the point where $t=0$.
(1). $\vec{r}^{\prime}(t)=\left(2 t-6 t^{2}\right) \vec{i}+\left(e^{1-t}-t\left(e^{1-t}\right) \vec{j}-3 \cos (3 t)\right) \vec{k}$.
(2). $\vec{r}^{\prime}(0)=\langle 0, e,-3\rangle$. So the unit vector is

$$
\vec{T}(0)=\frac{\vec{r}^{\prime}(0)}{\left|\vec{r}^{\prime}(0)\right|}=\frac{1}{\sqrt{e^{2}+9}}\langle 0, e,-3\rangle .
$$

Example 10. For the curve $\vec{r}(t)=\ln (2 t+e) \vec{i}+(t+2) \vec{j}$, find and sketch the position vector $\vec{r}(0)$ and the tangent vector $\vec{r}^{\prime}(0)$.

$$
\vec{r}^{\prime}(t)=\left\langle\frac{2}{2 t+3}, 1\right\rangle .
$$

So, $\vec{r}(0)=\langle 1,2\rangle$ and
$\vec{r}^{\prime}(0)=\left\langle\frac{2}{e}, 1\right\rangle$

Example 11. Find parametric equations for the tangent line to the curve with parametric equations

$$
x=t+3 \cos 2 t, \quad y=2 t e^{t^{2}}, \quad z=t^{3}+1
$$

at point $(3,0,1)$.

$$
\vec{r}^{\prime}(t)=\left\langle 1-6 \sin 2 t, 2 e^{t^{2}}+2 t(2 t) e^{t^{2}}, 3 t^{2}\right\rangle
$$

The position vector is $\vec{r}_{0}=\vec{r}(0)=\langle 3,0,1\rangle$.
From $z=1$, we have $t^{3}+1=1$, so $t=0$.
The direction vector is $\vec{r}^{\prime}(0)=\langle 1,2,0\rangle$.
The tangent line has equation $\vec{r}(t)=\langle 3,0,1\rangle+t\langle 1,2,0\rangle$.
The parametric equation is $x=3+t, y=2 t, z=1$.

Definition.

The second derivative of $\vec{r}(t)$ is the derivative of the first derivative. That is $\vec{r}^{\prime \prime}=\left(\vec{r}^{\prime}\right)^{\prime}$

Example 12. Find the second derivative of $\vec{r}(t)=\left\langle\sin (2 t), \ln (t), t^{3}\right\rangle$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 2 \cos (2 t), \frac{1}{t}, 3 t^{2}\right\rangle \\
& \vec{r}^{\prime \prime}=\left\langle-4 \sin 2 t,-t^{-2}, 3 t\right\rangle
\end{aligned}
$$

Theorem. Differentiation Rules:

Suppose \vec{u} and \vec{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1. $\frac{d}{d t}[\vec{u}(t)+\vec{v}(t)]=\vec{u}^{\prime}(t)+\vec{v}^{\prime}(t)$
...... linear property
2. $\frac{d}{d t}[c \vec{u}(t)]=c \vec{u}^{\prime}(t)$
...... linear property
3. $\frac{d}{d t}[f(t) \vec{u}(t)]=f^{\prime}(t) \vec{u}(t)+f(t) \vec{u}^{\prime}(t)$
.......... product rule
4. $\frac{d}{d t}[\vec{u}(t) \cdot \vec{v}(t)]=\vec{u}^{\prime}(t) \cdot \vec{v}(t)+\vec{u}(t) \cdot \vec{v}^{\prime}(t)$
......... product rule
5. $\frac{d}{d t}[\vec{u}(t) \times \vec{v}(t)]=\vec{u}^{\prime}(t) \times \vec{v}(t)+\vec{u}(t) \times \vec{v}^{\prime}(t)$
......... product rule
6. $\frac{d}{d t}[\vec{u}(f(t))]=\vec{u}^{\prime}(f(t)) f^{\prime}(t)$
............. chain rule

Example 13. Find the derivative $\frac{d}{d t}(\vec{a}(t) \cdot \vec{b}(t))$ for $\vec{a}=\left\langle t^{3}+1, t^{2}, \pi\right\rangle$ and $\vec{b}(t)=\left\langle 4, e^{t}, t+2\right\rangle$.

$$
\begin{aligned}
\frac{d}{d t}(\vec{a}(t) \cdot \vec{b}(t)) & =\vec{a}^{\prime} \cdot \vec{b}(t)+\vec{a} \cdot \vec{b}^{\prime}(t) \\
& =\left\langle 3 t^{2}, 2 t, 0\right\rangle \cdot\left\langle 4, e^{t}, t+2\right\rangle+\left\langle t^{3}+1, t^{2}, \pi\right\rangle \cdot\left\langle 0, e^{t}, 1\right\rangle \\
& =12 t^{2}+2 t e^{t}+t^{2} e^{t}+\pi
\end{aligned}
$$

Definition.

The definite integral of a continuous vector function $\vec{r}(t)$ can be defined as

$$
\int_{a}^{b} \vec{r}(t) d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \vec{r}\left(t_{i}\right) \Delta t .
$$

We also have an easy computation formula (Theorem) for the integral of $\vec{r}(t)=f(t) \vec{i}+g(t) \vec{j}+$ $h(t) \vec{k}$,

$$
\int_{a}^{b} \vec{r}(t) d t=\left(\int_{a}^{b} f(t) d t\right) \vec{i}+\left(\int_{a}^{b} g(t) d t\right) \vec{j}+\left(\int_{a}^{b} h(t) d t\right) \vec{k}
$$

The Fundamental Theorem of Calculus also can be extended to vector calculus:

$$
\int_{a}^{b} \vec{r}(t) d t=\vec{R}(b)-\vec{R}(a)
$$

where $\vec{R}(t)$ is an antiderivative of $\vec{r}(t)$, i.e., $\vec{R}^{\prime}(t)=\vec{r}(t)$
Example 14. If $\vec{r}(t)=(2 \sin t) \vec{i}+\left(e^{t}+1\right) \vec{j}+\left(8 t^{3}\right) \vec{k}$, calculate $\int \vec{r}(t) d t$ and $\int_{0}^{\pi / 2} \vec{r}(t) d t$.

$$
\begin{aligned}
\int \vec{r}(t) d t & =\left(\int 2 \sin t d t\right) \vec{i}+\left(\int e^{t}+1 d t\right) \vec{j}+\left(\int 8 t^{3} d t\right) \vec{k} \\
& =\left(-2 \cos t+c_{1}\right) \vec{i}+\left(e^{t}+t+c_{2}\right) \vec{j}+\left(2 t^{4}+c_{3}\right) \vec{k} \\
& =(-2 \cos t) \vec{i}+\left(e^{t}+t\right) \vec{j}+\left(2 t^{4}\right) \vec{k}+\vec{c} \\
\int_{0}^{\pi / 2} \vec{r}(t) d t & =\vec{R}\left(\frac{\pi}{2}\right)-\vec{R}(0) \\
& =\left(e^{\pi / 2}+\frac{\pi}{2}\right) \vec{j}+2\left(\frac{\pi}{2}\right)^{4} \vec{k}-(-2 \vec{i}+\vec{j}) \\
& =4 \vec{i}+\left(e^{\frac{\pi}{2}}+\frac{\pi}{2}-1\right) \vec{j}+\frac{\pi^{4}}{8} \vec{k}
\end{aligned}
$$

3 Arc length and curvature

Suppose a curve has the vector equation $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ for $a \leq t \leq b$, or the parametric equation $x=f(t), y=g(t), z=$ $h(t)$, where $f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)$ are continuous.

Definition.

If the curve is traversed exactly once as t increases from a to b, then its length is

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

A compact formula for the arc length is

$$
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t
$$

Example 15. Find the length of the arc of the circular helix with vector equation $\vec{r}(t)=$ $(\cos t) \vec{i}+(\sin t) \vec{j}+(t) \vec{k}$ from the point $(1,0,0)$ to the point $(1,0,2 \pi)$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle \\
& \left|\vec{r}^{\prime}(t)\right|=\sqrt{(\sin t)^{2}+(\cos t)^{2}+1}=\sqrt{2}
\end{aligned}
$$

The length of the arc is

$$
L=\int_{0}^{2 \pi}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{2} d t=2 \sqrt{2} \pi
$$

Definition.

The arc length function $s(t)$ is the length of the curve between $\vec{r}(a)$ and $\vec{r}(t)$ defined by

$$
s(t)=\int_{a}^{t}\left|\vec{r}^{\prime}(u)\right| d u=\int_{a}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}+\left(\frac{d z}{d u}\right)^{2}} d u
$$

From the Fundamental Theorem of Calculus, differentiate both sides, we have

$$
\frac{d s}{d t}=\left|\vec{r}^{\prime}(t)\right|
$$

It is often useful to parametrize a curve with respect to arc length s because arc length arises naturally from the shape of the curve and does not depend on a particular coordinate system.

Example 16. Reparametrize the helix $\vec{r}(t)=(\cos t) \vec{i}+(\sin t) \vec{j}+(t) \vec{k}$ with respect to arc length measured from $(1,0,0)$ in the direction of increasing t.

$$
\frac{d s}{d t}=\left|\vec{r}^{\prime}(t)\right|=\sqrt{2}
$$

So, $s=s(t)=\int_{0}^{t}\left|\vec{r}^{\prime}(u)\right| d u=\sqrt{2} t$.
$t=s / \sqrt{2}$.
So, $\vec{r}(t)=(\cos (s / \sqrt{2})) \vec{i}+(\sin (s / \sqrt{2})) \vec{j}+(s / \sqrt{2}) \vec{k}$

Definition.

* Let T be the unit tangent vector and s be the arc length. The curvature of a curve is

$$
\kappa=\left|\frac{d \vec{T}}{d s}\right|
$$

1. Curvature measure how quickly the curve change directions.
2. The curvature of a curve can be computed by

$$
\kappa(t)=\frac{\left|\vec{T}^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}
$$

Example 17. *Show that the curvature of a circle of radius a is $1 / a$.

$$
\begin{aligned}
& \vec{r}(t)=-a \sin t \vec{i}+a \cos t \vec{j} \quad \vec{r}(t)=a \cos t \vec{i}+a \sin t \vec{j} \\
& T(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\vec{r}^{\prime}(t)}{a}=-\sin t \vec{i}+\cos t \vec{j} \\
& T^{\prime}(t)=-\cos t \vec{i}-\sin t \vec{j} \\
& K(t)=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{1}{a}
\end{aligned}
$$

Theorem.

*The curvature of the curve given by the vector function \vec{r} is

$$
\kappa(t)=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}
$$

4. Motion in space: Velocity and Acceleration

Suppose a particle moves through space so that its position vector at time t is $\vec{r}(t)$.

Definition.

The velocity vector $\vec{v}(t)$ at time t is

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}
$$

The velocity vector is also the tangent vector.

The speed of the particle at time is the magnitude of the velocity vector, that is, $|\vec{v}(t)|$.
The acceleration of the particle is defined as the derivative of the velocity,

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t)
$$

Example 18. The position vector of an object moving in a plane is given by

$$
\vec{r}(t)=\left\langle t^{3},(1 / 2) t\right\rangle .
$$

Find its velocity, speed, and acceleration when $t=1$ and illustrate geometrically.

$$
\left.\begin{array}{l}
\text { Velocity } \vec{V}(t)=\vec{r}^{\prime}(t)=\left\langle 3 t^{2}, \frac{1}{2}\right\rangle \\
\text { Speed }|\vec{V}(t)|=\sqrt{\left(3 t^{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{9 t^{4}+\frac{1}{4}} \\
\text { Acceleration } \quad \vec{a}(t)
\end{array}=\vec{V}(t)=\langle 6 t, 0\rangle\right\rangle \begin{aligned}
\text { When } t=1, \quad \vec{V}(1) & =\left\langle 3, \frac{1}{2}\right\rangle \\
\mid \vec{V}(0) & =\sqrt{9+\frac{1}{4}}=\frac{\sqrt{37}}{2} \\
\vec{a}(1) & =\langle 6,0\rangle
\end{aligned}
$$

Example 19. Find the velocity, acceleration, and speed of a particle with position vector

$$
\vec{r}(t)=\langle\sin t, \cos t, t\rangle
$$

Velocity: $\vec{V}(t)=\vec{r}_{(t)}^{\prime}=\langle\cos t,-\sin t, 1\rangle$
Acceleration: $\vec{a}(t)=\vec{v}(t)=\langle-\sin t,-\cos t, 0\rangle$
Speed: $|\vec{V}(t)|=\sqrt{\sin ^{2} t+\cos ^{2} t+1}=\sqrt{2}$

Example 20. A moving particle starts at an initial position $\vec{r}(0)=\langle 0,0,1\rangle$ with initial velocity $\vec{v}(0)=\vec{i}+\vec{k}$. Its acceleration is $\vec{a}(t)=\langle 2 t, 1,6 t\rangle$. Find its velocity and position at time t.

Step $1(V$ eloctity)

$$
\begin{aligned}
& \vec{V}(t)=\int \vec{a}(t) d t=\left\langle t^{2}, t, 3 t^{2}\right\rangle+\vec{c}_{1} \\
& \vec{V}(0)=\langle 1,0,-1\rangle \quad \Rightarrow \quad\langle 1,0,-1\rangle=\langle 0,0,0\rangle+\vec{c}_{1} \\
& \quad \Rightarrow \quad \overrightarrow{c_{1}}=\langle 1,0,-1\rangle
\end{aligned}
$$

So $\vec{V}(t)=\left\langle t^{2}+1, t, 3 t^{2}-1\right\rangle$
Step 2 (position)

$$
\begin{aligned}
& \vec{r}(t)=\int \vec{v}(t) d t=\left\langle\frac{t^{3}}{3}+t, \frac{t^{2}}{2}, t^{3}-t\right\rangle+\vec{c}_{2} \\
& \vec{r}(0)=\langle 0,0,1\rangle \Rightarrow\langle 0,0,1\rangle=\langle 0,0,0\rangle+\vec{c}_{2} \\
& \Rightarrow \overrightarrow{c_{2}}=\langle 0,0,1\rangle \\
& \Rightarrow \vec{r}(t)=\left\langle\frac{t^{3}}{3}+t, \frac{t^{2}}{2}, t^{3}-t+1\right\rangle
\end{aligned}
$$

Example 21. A particle has position function $\vec{r}(t)=\left\langle t^{2}+1,3 t, t^{2}-4 t\right\rangle$. When is the speed a minimum?

Step 1: Find speed function.

$$
\vec{V}(t)=\vec{r}^{\prime}(t)=\langle 2 t, 3,2 t-4\rangle
$$

Speed: $|\vec{V}(t)|=\sqrt{(2 t)^{2}+3^{2}+(2 t-4)^{2}}=\sqrt{8 t^{2}-16 t+25}$
Step 2 Find critical points
$\frac{d}{d t}|\vec{v} t t| \left\lvert\,=\frac{1}{2}\left(8 t^{2}-16 t+25\right)^{-\frac{1}{2}} \cdot(16 t-16) . \quad\right.$ chan rale
critical points when $16 t-16=0 \Rightarrow t=1$
Step 3: $1^{\text {st }}$ derivative test:

$$
\frac{d}{d t}|\vec{V}(0)|<0 \quad \frac{d}{d t}|\vec{V}(2)|>0
$$

decrease increase
\Rightarrow When $t=1$, the speed
is a minimum.

