## $\S 1.4$ Lines, planes, and hyperplanes

- Review: Lines in $\mathbb{R}^{2}$.

1. A line in $\mathbb{R}^{2}$ is determined by the slope $k$ and a point $\left(x_{0}, y_{0}\right)$ on the line.

$$
y-y_{0}=k\left(x-x_{0}\right)
$$

2. A line in $\mathbb{R}^{2}$ is determined by two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ on the line.

$$
\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{y-y_{0}}{y_{1}-y_{0}} \quad \quad(\text { Symmetric Equation })
$$

Example 1. The line in $\mathbb{R}^{2}$ defined by $y=0.5 x+2$, passing two points $(-4,0)$ and $(2,3)$.


3. A line in $\mathbb{R}^{2}$ is determined by a position vector $\vec{r}_{0}=\left\langle x_{0}, y_{0}\right\rangle$ and a direction vector $\vec{v}=\langle a, b\rangle$. It can be written as a vector equation:

$$
\vec{r}=\vec{r}_{0}+t \vec{v},
$$

or written as

$$
\langle x, y\rangle=\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle .
$$

From two points, $\vec{v}$ is calculated by $\vec{v}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}\right\rangle$.
4. Equivalently, a line in $\mathbb{R}^{2}$ can be written as a parametric equation:

$$
x=x_{0}+a t, \quad y=y_{0}+b t .
$$

## - Lines in $\mathbb{R}^{3}$.



1. A line in $\mathbb{R}^{3}$ is determined by a position vector $\vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and a direction vector $\vec{v}=\langle a, b, c\rangle$ with vector equation

$$
\vec{r}=\vec{r}_{0}+t \vec{v}
$$

or

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle .
$$

$t$ is called a parameter.
From two points $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{1}, y_{1}, z_{1}\right)$, the direction vector $\vec{v}$ can be calculated by $\vec{v}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$.
2. Equivalently, a line in $\mathbb{R}^{3}$ can be written as parametric equation

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t .
$$

3. Equivalently, a line in $\mathbb{R}^{3}$ can be written as symmetric equation

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Remark: All those three equations can be generalized to line in $\mathbb{R}^{n}$.
Example 2. Find a vector equation, parametric equation and symmetric equation for the line that passes through the point $(1,2,3)$ and is parallel to the vector $6 \vec{i}-3 \vec{j}-\vec{k}$. Find two other points on the line.

Position vector $\vec{r}_{0}=\langle 1,2,3\rangle$ and direction vector $\vec{v}=\langle 6,-3,-1\rangle$.
Vector equation is given by $\vec{r}=\vec{r}_{0}+t \vec{v}=\langle 1,2,3\rangle+t\langle 6,-3,-1\rangle=\langle 1+6 t, 2-3 t, 3-t\rangle$.
Parametric equation is $x=1+6 t ; y=2-3 t ; z=3-t$.
Symmetric equation is $\frac{x-1}{6}=\frac{y-2}{-3}=\frac{z-3}{-1}$.

Example 3. Find a vector equation for the line that passes through the point $(1,2,3)$ and is parallel to a line $x=2+2 t, y=1+3 t, z=5-2 t$.

Position vector $\vec{r}_{0}=\langle 1,2,3\rangle$ and direction vector $\vec{v}=\langle 2,3,-2\rangle$.
Vector equation is given by $\vec{r}=\vec{r}_{0}+t \vec{v}=\langle 1,2,3\rangle+t\langle 2,3,-2\rangle=\langle 1+2 t, 2+3 t, 3-2 t\rangle$.

Example 4. Find a vector equation, parametric equation and symmetric equation for the line that passes through two points $(-5,5,4)$ and $(7,-1,2)$

Position vector $\vec{r}_{0}=\langle-5,5,4\rangle$ and direction vector $\vec{v}=\langle 12,-6,-2\rangle$.
Vector equation is given by $\vec{r}=\vec{r}_{0}+t \vec{v}=\langle-5,5,4\rangle+t\langle 12,-6,-2\rangle=\langle-5+12 t, 5-$ $6 t, 4-2 t\rangle$.
Parametric equation is $x=-5+12 t ; y=5-6 t ; z=4-2 t$.
Symmetric equation is $\frac{x+5}{12}=\frac{y-5}{-6}=\frac{z-4}{-2}$.

## Theorem.

Two lines are parallel if and only if one direction vector is a scaler multiple of the the other direction vector.

Example 5. Are the line $x=3+2 t, y=2-t, z=8+3 t$ and the line $\frac{x-x_{0}}{-4}=\frac{y-y_{0}}{2}=\frac{z-z_{0}}{-6}$ parallel?

The first line has direction vector $\vec{u}=\langle 2,-1,3\rangle$.
The second line has direction vector $\vec{v}=\langle-4,2,-6\rangle$.
Two lines are parallel since $\vec{v}=2 \vec{u}$.

## Definition.

Standard parameterization of the line segment from point $P\left(x_{0}, y_{0}, z_{0}\right)$ to point $Q\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+t(\overrightarrow{P Q})
$$

by restricting $0 \leq t \leq 1$. Here $\overrightarrow{P Q}=\left\langle x_{1}-x_{0}, y_{1}-y_{0}, z_{1}-z_{0}\right\rangle$

Example 6. Give the parametric description of the line segment from the point $P(1,2,3)$ to the point $Q(4,5,7)$.

Direction vector is $\overrightarrow{P Q}=Q-P=\langle 3,3,4\rangle$.
The line segment is $(x, y, z)=(1,2,3)+t(3,3,4)$ for $0 \leq t \leq 1$.

## - Planes in $\mathbb{R}^{3}$.

A plane in $\mathbb{R}^{3}$ is determined by a point $P$ (with position vector $\vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ ) on the plane and a vector $\vec{n}=\langle a, b, c\rangle$ that is orthogonal (perpendicular) to the plane.


For any position vector $\vec{r}=\langle x, y, z\rangle$ with terminal point on the plane, we have a vector equation of the plane

$$
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0
$$

Equivalently,

$$
\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

Equivalently, we have a (scalar) equation of the plane

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

The scalar equation of the plane can be simplified as standard form

$$
a x+b y+c z+d=0 .
$$

Example 7. Find an equation of the plane passing trough the point $(1,2,3)$ with normal vector $\langle 4,5,6\rangle$ (or $4 \vec{i}+5 \vec{j}+6 \vec{k}$ ).

Position vector $\vec{r}_{0}=\langle 1,2,3\rangle$ and normal vector $\vec{n}=\langle 4,5,6\rangle$
Vector equation is $\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$, so $\langle 4,5,6\rangle \cdot\langle x-1, y-2, z-3\rangle=0$.
Scalar equation is $4(x-1)+5(y-2)+6(z-3)=0$.
Standard equation is $4 x+5 y+6 z-32=0$

## Definition.

Two planes are parallel if their normal vectors are parallel. More generally, the angle between two planes is the acute angle between the two normal vectors.

Example 8. Find an equation of the plane trough the point $(1,4,-3)$, and parallel to the plane $5 x+y-2 z=9$.

Normal vector is $\vec{n}=\langle 5,1,-2\rangle$
The equation for the plane is $5(x-1)+(y-4)-2(z+3)=0$.
Standard form is $5 x+y-2 z-15=0$.

Example 9. * Find the angle between the two planes, $x+2 y+z=5$ and $x+y=8$.

Two normal vectors $\vec{m}=\langle 1,2,1\rangle$ and $\vec{n}=\langle 1,1,0\rangle$.
$\cos \theta=\frac{\vec{m} \cdot \vec{n}}{|\vec{m}||\vec{n}|}=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2}$.
So, $\theta=\arccos \frac{\sqrt{3}}{2}=\pi / 6$

Example 10. Find an equation of a line trough the point $(1,2,3)$, and perpendicular to the plane $5 x+y-2 z=4$.

Position vector is $\vec{r}_{0}=\langle 1,2,3\rangle$.
Direction vector $\vec{v}=\vec{n}=\langle 5,1,-2\rangle$
Equation of the line $\vec{r}=\langle 1,2,3\rangle+t\langle 5,1,-2\rangle=\langle 1+5 t, 2+t, 3-2 t\rangle$, or symmetric equation

$$
\frac{x-1}{-5}=\frac{y-2}{1}=\frac{z-3}{-2}
$$

Example 11. Find the intersection point of the line $x=1-2 t, y=3+t, z=2+4 t$ and the plane $2 x-y+z=0$.

Plug in the line into the plane

$$
2(1-2 t)-(3+t)+(2+4 t)=0
$$

Solve the equation we have $t=1$. So $x=-1, y=4, z=6$.
The intersection point is $(-1,4,6)$.

Example 12. Show that the line given by $(x, y, z)=(1,4,5)+t(1,1,1)$ is parallel to the plane given by $4 x-9 y+5 z-8=0$.

Method 1. Check that there is no intersection point by computation as the above example. Method 2. Check that the direction vector $\vec{v}=\langle 1,1,1\rangle$ of the line is orthogonal to the normal vector $\vec{n}=\langle 4,-9,5\rangle$. Compute dot product $\vec{v} \cdot \vec{n}=0$.

Example 13. Determine whether the planes are parallel, perpendicular, or nether. $x+2 y+3 z=$ 9 and $-4 x-y+2 z=8$.

Normal vectors for two planes are $\vec{m}=\langle 1,2,3\rangle$ and $\vec{n}=\langle-4,-1,2\rangle$.
They are not parallel since they are not scalar multiple.
$\vec{m} \cdot \vec{n}=0$ so $\vec{m}$ and $\vec{n}$ are perpendicular.
So, two planes are perpendicular.

Example 14. *Find a formula for the distance between a point $\left(x_{1}, y_{1}, z_{1}\right)$ and a plane $a x+$ $b y+c z+d=0$.


The distance between $\left(x_{1}, y_{i} z_{1}\right)$ and $(x y z)$ is

$$
\begin{aligned}
D & =\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2}} \\
& =\sqrt{(a t)^{2}+(b t)^{2}+(c t)^{2}} \\
& =\sqrt{a^{2}+b^{2}+c^{2}}|t|=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Example 15. *Calculate the distance between two parallel planes
$2 x+3 y+z+2=0$ and $4 x+6 y+2 z+1=0$.

$$
\begin{array}{r}
\begin{aligned}
&\langle 2,3,1\rangle \quad\langle 4,6,2\rangle \\
&=2\langle 2,3,1\rangle
\end{aligned} \\
\begin{array}{r}
\text { are normal vectors. } \\
\text { Let } y=z=0 \Rightarrow x=-1 \\
(-1,0,0)
\end{array} \\
\text { Using the point on the plane } 2 x+3 y+z+2=0 . \\
\text { above example } D=\frac{|4(-1)+6(0)+2(0)+1|}{\sqrt{4^{2}+6^{2}+2^{2}}}=\frac{3}{\sqrt{46}}
\end{array}
$$

