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81.4 Lines, planes, and hyperplanes
» Review: Lines in R2.

1. A line in R? is determined by the slope k and a point (xg,%o) on the line.
Y —yo = k(z — )

2. A line in R? is determined by two points (zg,yo) and (z1,%1) on the line.

T — Xo _ Y—1Y
T — o Y1 — Yo

(Symmetric Equation)

Example 1. The line in R? defined by y = 0.5z + 2, passing two points (—4,0) and (2, 3).
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3. A line in R? is determined by a position vector 7y = (z¢, yo) and a direction vector ¥ = (a, b).
It can be written as a vector equation:

— —

¥ = 7o + tv,

or written as
(x,y) = (x0,Y0) + t{a,b).

From two points, ¥/ is calculated by ¢ = (z1 — xo, 11 — o).

4. Equivalently, a line in R? can be written as a parametric equation:

r=ux9+at, y=1yo+ bt

» Lines in R3.
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T

1. A line in R? is determined by a position vector 7y = (xg, ¥o, 20) and a direction vector
U = (a, b, c) with vector equation

—

= F[) +tU,
or
<xuy72> = <$073/0720> _'_t(a’? ba C)'

t is called a parameter.
From two points (xg, Yo, 20) and (x1, 41, 21), the direction vector ¥ can be calculated by

T = (r1 — o, Y1 — Yo, 21 — 20)-
2. Equivalently, a line in R3 can be written as parametric equation

r=x0+at, y=yo+0bt, z=z+ct.
3. Equivalently, a line in R3 can be written as symmetric equation

T—To Y—Y 22— %0
a b c

Remark: All those three equations can be generalized to line in R™.

Example 2. Find a vector equation, parametric equation and symmetric equation for the line
that passes through the point (1,2, 3) and is parallel to the vector 6i — 3j — k. Find two other
points on the line.

Position vector 75 = (1,2, 3) and direction vector v = (6, —3, —1).
Vector equation is given by 7= 7 + tv = (1,2, 3) + (6, -3, —1) = (1 + 6¢,2 — 3t,3 — t).
Parametric equationis x =14 6t;y =2 — 3t;2 =3 — L.
r—1 y—2 2-3
-3 -1

Symmetric equation is
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Example 3. Find a vector equation for the line that passes through the point (1,2, 3) and is
parallel to a line x =24+ 2t,y =1+ 3t,2 =5 — 2L

Position vector 7 = (1,2, 3) and direction vector ¥ = (2,3, —2).

Vector equation is given by 7= 7y + t0 = (1,2,3) + (2,3, —2) = (1 + 2¢,2 + 3t,3 — 2t).

Example 4. Find a vector equation, parametric equation and symmetric equation for the line
that passes through two points (—5,5,4) and (7,—1,2)

Position vector 7y = (—5,5,4) and direction vector ¥ = (12, —6, —2).
Vector equation is given by 7 = 7y + t0' = (=5,5,4) + t(12,—6,—2) = (=5 + 12t,5 —
6t,4 — 2t).
Parametric equation is x = =5+ 12t;y =5 — 6t; 2 = 4 — 2t.
r+5 y—5 z-4
-6 =2

Symmetric equation is

Theorem.

Two lines are parallel if and only if one direction vector is a scaler multiple of the the
other direction vector.
—To Y—Y <~ %0

Example 5. Are the line x = 34-2t, y = 2—t, 2 = 843t and the line * 1 - 9 = 5

parallel?

The first line has direction vector @ = (2, —1, 3).
The second line has direction vector ¥ = (—4,2, —6).
Two lines are parallel since v = 2.

Definition.

Standard parameterization of the line segment from point P (zg,yo, 20) to point
Q (21,91, 21) is
(2.4, 2) = (20,90, 20) + H(PQ)

by restricting 0 <t < 1. Here ]@ = (x1 — T, Y1 — Yo, 21 — Z0)

Example 6. Give the parametric description of the line segment from the point P(1,2,3) to
the point Q(4,5,7).

Direction vector is @ =Q—P=(334).
The line segment is (z,y,2) = (1,2,3) +¢(3,3,4) for 0 <t < 1.
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» Planes in R3.

A plane in R? is determined by a point P (with position vector 7y = (g, yo, 20)) on the plane
and a vector 77 = (a, b, ¢) that is orthogonal (perpendicular) to the plane.

For any position vector ¥ = (z,y, z) with terminal point on the plane, we have a vector
equation of the plane

Equivalently,
<(l,b,C> ' <x_l‘07y_y0az_z0> =0

Equivalently, we have a (scalar) equation of the plane
a(x —xo) + b(y — yo) + c(z — 29) = 0.
The scalar equation of the plane can be simplified as standard form

ar +by +cz+d=0.

Example 7. Find an equation of the plane passing trough the point (1, 2, 3) with normal vector
(4,5,6) (or 4i 4 5] + 6k).

Position vector 7 = (1,2, 3) and normal vector 7 = (4,5, 6)

Vector equation is 7 - (7" — 75) = 0, so (4,5,6) - (x — 1,y — 2,2 —3) = 0.
Scalar equation is 4(x — 1) +5(y — 2) + 6(z — 3) = 0.

Standard equation is 4x + 5y + 62 — 32 =0

Definition.

Two planes are parallel if their normal vectors are parallel. More generally, the angle
between two planes is the acute angle between the two normal vectors.
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Example 8. Find an equation of the plane trough the point (1,4,—3), and parallel to the
plane 5z +y — 22 = 9.

Normal vector is 77 = (5,1, —2)
The equation for the plane is 5(x — 1) + (y —4) — 2(z + 3) = 0.
Standard form is 5z +y — 22 — 15 = 0.

Example 9. * Find the angle between the two planes, z + 2y + 2z =5 and x + y = 8.

Two normal vectors m = (1,2,1) and 7 = (1, 1,0).
mei 3 /3

0089 = ===
Al 2v3 2

So, 0 = :rnrccos‘/%§ =7/6

Example 10. Find an equation of a line trough the point (1,2, 3), and perpendicular to the
plane 5z +y — 2z = 4.

Position vector is 75 =
Direction vector v = 71

Equation of the line ¥ =
equation

(1,2,3).
5, 1 —9)
(1,2,3) + t(5,1,—2) = (1 + 5¢t,2 4+ t,3 — 2t), or symmetric

Example 11. Find the intersection point of the line x =1 — 2t,y = 3+ ¢,z = 2 4 4t and the
plane 2z —y 4+ 2 = 0.

Plug in the line into the plane
21 —2t) — (3+1) + (24 4t) = 0
Solve the equation we have t = 1. So z = —1,y = 4,2 = 6.

The intersection point is (—1,4,6).

Example 12. Show that the line given by (z,y, 2) = (1,4,5) + (1,1, 1) is parallel to the plane
given by 4xr — 9y 4+ 52z — 8 = 0.

Method 1. Check that there is no intersection point by computation as the above example.
Method 2. Check that the direction vector 7 = (1,1,1) of the line is orthogonal to the
normal vector 77 = (4, —9,5). Compute dot product - 7 = 0.
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Example 13. Determine whether the planes are parallel, perpendicular, or nether. z+42y+3z =
9 and —4x — y + 2z = 8.

Normal vectors for two planes are m = (1,2,3) and 7 = (—4, —1,2).
They are not parallel since they are not scalar multiple.

m -n = 0 som and 7 are perpendicular.

So, two planes are perpendicular.

Example 14. *Find a formula for the distance between a point (z1,¥i,21) and a plane ax +

by +cz+d=0.
"‘Fﬁ @,yz‘j” The [me I’”?kmlrolt/ %t plwe pasly oy, 2,) 8
iy
/ Akt o (% 4at o =0
/ p et (4 tat) +h(y tbt)+ c 3 +c) +
L— 2= 24 ct te Xt CE o

aSLF

The olvtance between (%) % 2)and (X y3) 15
D=] @04 g-1)s@-a)
L:,Ji@t)L'f‘(b‘é)L'l-@t)\'

Jax Y9t @t |

‘Ja"-l-l» +ct lf’ = Ny

Example 15. *Calculate the distance between two parallel planes
2v4+3y+z2z+2=0and 4o+ 6y + 22+ 1=0.

2,3, &y 4> are nomsl vects,
=242,3, D

‘Ursie a poht o the plére ZX+3Y+2 4 =0,
bt §=2=0 =3 y=|
(", 0) O)

Uskp do. D= | 44) +6o-4210)H | e 3
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