§1.3 Dot product, angles, and orthogonal projection in \mathbb{R}^n

Definition.

If $\vec{a} = \langle a_1, a_2, \dots, a_n \rangle$ and $\vec{b} = \langle b_1, b_2, \dots, b_n \rangle$ in \mathbb{R}^n , then the **dot product** (inner product) of \vec{a} and \vec{b} is a number given by

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

Example 1. $(1, 2, 3) \cdot (-2, 6, 2/3) = -2 + 12 + 2 = 12.$

Theorem.

If \vec{a} , \vec{b} and \vec{c} are vectors in \mathbb{R}^n , and c is a scalar, then (1) $\vec{a} \cdot \vec{a} = |a|^2$ (2) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (3) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (4) $\vec{0} \cdot \vec{a} = 0$ (5) $(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$

Let us verify (1) and (2) in \mathbb{R}^3 , the others are similarly.

•
$$\vec{a} \cdot \vec{a} = a_1 a_1 + a_2 a_2 + a_3 a_3 = a_1^2 + a_2^2 + a_3^2 = |a|^2$$

• $\vec{a} \cdot (\vec{b} + \vec{C}) = \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + C_1, b_2 + C_2, b_3 + C_3 \rangle$
= $a_1 (b_1 + C_1) + a_2 (b_2 + C_2) + a_3 (b_3 + C_3)$
= $a_1 (b_1 + a_1 C_1 + a_2 b_2 + a_3 (b_3 + C_3))$
= $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{C}$

Theorem. (Cauchy-Schwarz Inequality)

Let \vec{a} an \vec{b} be vectors in \mathbb{R}^n . Then,

$$\vec{a} \cdot \vec{b}| \le |\vec{a}| |\vec{b}|.$$

In particular, $|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}|$ if and only if \vec{a} and \vec{b} are parallel.

Hint for proof: Consider the fact $|\vec{a} + t\vec{b}|^2 \ge 0$ for any real number t.

Theorem. Triangle Inequality

Let \vec{a} an \vec{b} be vectors in \mathbb{R}^n . Then,

$$|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|.$$

In particular, $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ if and only if a and b have the same direction.

Hint for proof: consider the square of both sides and then use Cauchy-Schwarz inequality.

If θ $(0 \le \theta \le \pi)$ is the **angle** between the vector \vec{a} and \vec{b} in \mathbb{R}^n , then

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta.$$

Or, we can write the equality as

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|a||b|}$$
 or $\theta = \arccos \frac{\vec{a} \cdot \vec{b}}{|a||b|}$

In particular, if \vec{a} and \vec{b} are parallel, then $\theta = 0$ or π .

Remark: In \mathbb{R}^2 and \mathbb{R}^3 , the angle is already defined in trigonometry, the above formula is a theorem proved with the help of *Law of Cosines* from trigonometry:

$$|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta$$

For \mathbb{R}^n , $n \ge 4$, we use it as a definition for the angle between two vectors.

Example 2. If the vectors \vec{a} and \vec{b} have length 4 and 6, and the angle between \vec{a} and \vec{b} is $\pi/6$, find $\vec{a} \cdot \vec{b}$.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\frac{\pi}{6}) = 4(6)(\sqrt{3}/2) = 12\sqrt{3}.$$

Example 3. Find the angle between $\vec{a} = \langle 1, 2, 3 \rangle$ and $\vec{b} = \langle 2, -1, 2 \rangle$.

First, calculate
$$|\vec{a}| = \sqrt{14}$$
, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 6$.
So, the angle $\theta = \arccos \frac{\vec{a} \cdot \vec{b}}{|a||b|} = \arccos(2/\sqrt{14}) \approx 1.01 \approx 57.69^\circ$

Two non-zero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal**, if the angle between them is $\theta = \pi/2$.

Theorem.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.

Example 4. Show that $3\vec{i} + 2\vec{j} - \vec{k}$ is perpendicular to $3\vec{i} - 5\vec{j} - \vec{k}$.

 $(3\vec{i} + 2\vec{j} - \vec{k}) \cdot (3\vec{i} - 5\vec{j} - \vec{k}) = 0.$

Theorem.

If θ is **acute** $(0 \le \theta < \pi/2)$, then $\cos \theta > 0$. Thus $\vec{a} \cdot \vec{b} > 0$. If θ is **obtuse** $(\pi/2 \le \theta \le \pi)$, then $\cos \theta < 0$. Thus $\vec{a} \cdot \vec{b} < 0$. When \vec{a} and \vec{b} are in the **same direction** $(\theta = 0)$, then $\cos \theta = 1$. Thus, $\vec{a} \cdot \vec{b} = |a||b|$. When \vec{a} and \vec{b} are in the **opposite direction** $(\theta = \pi)$, then $\cos \theta = -1$. Thus, $\vec{a} \cdot \vec{b} = -|a||b|$.

The theorem follows from $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.

Example 5. Find a unit vector which is orthogonal to both (1, 1, 0) and (1, 2, 3).

Let
$$\vec{\alpha}^{2} = \langle a_{1}, a_{2}, a_{3} \rangle$$
 be touch vector.
Then $\langle a_{1}, a_{2}, a_{3} \rangle \langle 1, 1, o \rangle = a_{1} + a_{2} = 0$
 $\langle a_{1}, a_{2}, a_{3} \rangle \langle 1, 2, 3 \rangle = a_{1} + 2a_{2} + 3a_{3} = 0$
Next, we need to solve $\begin{cases} a_{1} + a_{2} = 0 \\ a_{1} + 2a_{2} + 3a_{3} = 0 \end{cases}$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{2} = -3a_{3} = -a_{2} + 2a_{2} + 3a_{3} = 0$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{2} = -3a_{3} = -a_{2} + 2a_{2} + 3a_{3} = 0$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{2} = -3a_{3} = -a_{2} + 2a_{2} + 3a_{3} = 0$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{2} = -3a_{3} = -a_{2} + 2a_{2} + 3a_{3} = 0$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{2} = -3a_{3} = -3a_{3} = -a_{2} + 2a_{2} + 3a_{3} = 0$
 $\vec{\alpha}_{2} = -3 a_{3} = -3a_{3} = -3$

• Orthogonal Projections in \mathbb{R}^n

The orthogonal projection of \vec{w} onto \vec{u} is denoted by $\operatorname{proj}_{\vec{w}} \vec{u}$. It is also called the component of \vec{w} parallel to \vec{u} .

The component of \vec{w} normal (or orthogonal) to \vec{u} is the vector

 $\vec{w} - \operatorname{proj}_{\vec{w}} \vec{u}$

Formula for projection of \vec{b} onto \vec{a} :

$$\operatorname{proj}_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{a}}{|\vec{a}|} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2}\right) \vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a}$$

Proof: Suppose $\operatorname{proj}_{\vec{a}} \vec{b} = x\vec{a}$. Then, $\vec{a} \cdot (\vec{b} - x\vec{a}) = 0$. That is $\vec{a} \cdot \vec{b} - \vec{a} \cdot x\vec{a} = 0$. Hence $\vec{a} \cdot \vec{b} = x(\vec{a} \cdot \vec{a})$ and so $x = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$.

Example 6. Find the orthogonal projection of $\vec{b} = \langle 7, 6, 3 \rangle$ onto $\vec{a} = \langle 4, 2, 0 \rangle$.

$$\operatorname{proj}_{\vec{a}} \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a} = \left(\frac{40}{20}\right) \langle 4, 2, 0 \rangle = \langle 8, 4, 0 \rangle$$

Example 7. Find the components of $\vec{F} = \langle 1, 2, 6 \rangle$ parallel and normal to $\vec{v} = \langle 1, 1, 2 \rangle$.

The components of
$$\vec{F}$$
 parallel to \vec{v} is
 $\operatorname{proj}_{\vec{v}}(\vec{F}) = \left(\frac{\vec{F} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v} = \frac{15}{6} \langle 1, 1, 2 \rangle = \langle 5/2, 5/2, 5 \rangle$
The components of \vec{F} normal to \vec{v} is
 $\vec{F}_n = \vec{F} - \operatorname{proj}_{\vec{v}}(\vec{F}) = \langle -3/2, -1/2, 1 \rangle$

One application of projection in physics is calculating the **work** W by a constant force F moving an object through a distance d. If the force F is along the line of motion, then the work W = Fd.

Definition.

If F in \mathbb{R}^n has an angle θ with the line of motion, then the **work** is defined by $W = (|\vec{F}|\cos\theta)|\vec{d}|$. Moreover

$$W = |\vec{F}| |\vec{d}| \cos \theta = \vec{F} \cdot \vec{d}.$$

Example 8. A cart is pulled 100 meters along a horizontal path with a force of 60 N exerted at an angle of 25° above the horizontal. Find the work done by the force.

The work done by the force is

$$W = \vec{F} \cdot \vec{d} = |\vec{F}| |\vec{d}| \cos \theta = 60(100) \cos 25^{\circ} \approx 5437 \ N \cdot m$$

Example 9. A force is given by a vector $\vec{F} = \langle -1, 2, 4 \rangle$ and move a particle from the point A(2, 2, 1) to the point B(0, 3, 2). Find the work done by the force.

The displacement vector $\vec{d} = \overrightarrow{AB} = B - A = \langle -2, 1, 1 \rangle$. The work is $W = \vec{F} \cdot \vec{d} = 2 + 2 + 4 = 8$.