$\S 1.3$ Dot product, angles, and orthogonal projection in \mathbb{R}^{n}

Definition.

If $\vec{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ in \mathbb{R}^{n}, then the dot product (inner product) of \vec{a} and \vec{b} is a number given by

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} .
$$

Example 1. $\langle 1,2,3\rangle \cdot\langle-2,6,2 / 3\rangle=-2+12+2=12$.

Theorem.

If \vec{a}, \vec{b} and \vec{c} are vectors in \mathbb{R}^{n}, and c is a scalar, then
(1) $\vec{a} \cdot \vec{a}=|a|^{2}$
(2) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
(3) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
(4) $\overrightarrow{0} \cdot \vec{a}=0$
(5) $(c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b})$

Let us verify (1) and (2) in \mathbb{R}^{3}, the others are similarly.

- $\vec{a} \cdot \vec{a}=a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=|a|^{2}$
- $\vec{a} \cdot(\vec{b}+\vec{c})=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle b_{1}+\dot{c}_{1}, b_{2}+c_{2}, b_{3}+c_{3}\right\rangle$

$$
\begin{aligned}
& =a_{1}\left(b_{1}+c_{1}\right)+a_{2}\left(b_{2}+c_{2}\right)+a_{3}\left(b_{3}+c_{3}\right) \\
& =a_{1} b_{1}+a_{1} c_{1}+a_{2} b_{2}+a_{2} c_{2}+a_{3} b_{3}+a_{3} c_{3} \\
& =\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}
\end{aligned}
$$

Theorem. (Cauchy-Schwarz Inequality)

Let \vec{a} an \vec{b} be vectors in \mathbb{R}^{n}. Then,

$$
|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}| .
$$

In particular, $|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}|$ if and only if \vec{a} and \vec{b} are parallel.

Hint for proof: Consider the the fact $|\vec{a}+t \vec{b}|^{2} \geq 0$ for any real number t.

Theorem. Triangle Inequality

Let \vec{a} an \vec{b} be vectors in \mathbb{R}^{n}. Then,

$$
|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| .
$$

In particular, $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ if and only if a and b have the same direction.

Hint for proof: consider the square of both sides and then use Cauchy-Schwarz inequality.

If $\theta(0 \leq \theta \leq \pi)$ is the angle between the vector \vec{a} and \vec{b} in \mathbb{R}^{n}, then

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta .
$$

Or, we can write the equality as

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|a||b|} \text { or } \theta=\arccos \frac{\vec{a} \cdot \vec{b}}{|a||b|}
$$

In particular, if \vec{a} and \vec{b} are parallel, then $\theta=0$ or π.

Remark: In \mathbb{R}^{2} and \mathbb{R}^{3}, the angle is already defined in trigonometry, the above formula is a theorem proved with the help of Law of Cosines from trigonometry:

$$
|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta
$$

For $\mathbb{R}^{n}, n \geq 4$, we use it as a definition for the angle between two vectors.
Example 2. If the vectors \vec{a} and \vec{b} have length 4 and 6 , and the angle between \vec{a} and \vec{b} is $\pi / 6$, find $\vec{a} \cdot \vec{b}$.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \left(\frac{\pi}{6}\right)=4(6)(\sqrt{3} / 2)=12 \sqrt{3} .
$$

Example 3. Find the angle between $\vec{a}=\langle 1,2,3\rangle$ and $\vec{b}=\langle 2,-1,2\rangle$.

First, calculate $|\vec{a}|=\sqrt{14},|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$.
So, the angle $\theta=\arccos \frac{\vec{a} \cdot \vec{b}}{|a||b|}=\arccos (2 / \sqrt{14}) \approx 1.01 \approx 57.69^{\circ}$

Two non-zero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal, if the angle between them is $\theta=\pi / 2$.

Theorem.
Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.

Example 4. Show that $3 \vec{i}+2 \vec{j}-\vec{k}$ is perpendicular to $3 \vec{i}-5 \vec{j}-\vec{k}$.

$$
(3 \vec{i}+2 \vec{j}-\vec{k}) \cdot(3 \vec{i}-5 \vec{j}-\vec{k})=0
$$

Theorem.

If θ is acute $(0 \leq \theta<\pi / 2)$, then $\cos \theta>0$. Thus $\vec{a} \cdot \vec{b}>0$.
If θ is obtuse $(\pi / 2 \leq \theta \leq \pi)$, then $\cos \theta<0$. Thus $\vec{a} \cdot \vec{b}<0$.
When \vec{a} and \vec{b} are in the same direction $(\theta=0)$, then $\cos \theta=1$. Thus, $\vec{a} \cdot \vec{b}=|a||b|$.
When \vec{a} and \vec{b} are in the opposite direction $(\theta=\pi)$, then $\cos \theta=-1$. Thus, $\vec{a} \cdot \vec{b}=$ $-|a||b|$.

The theorem follows from $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$.

Example 5. Find a unit vector which is orthogonal to both $\langle 1,1,0\rangle$ and $\langle 1,2,3\rangle$.

$$
\begin{array}{ll}
& \begin{array}{c}
a_{1}=-a_{2} \\
\\
\text { Let } \vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
\text { be tush vector. }
\end{array} \\
\text { Then }\left\langle a_{2}+2 a_{2}+3 a_{3}=0\right.
\end{array} \quad \begin{aligned}
& \left.\Rightarrow a_{2}=a_{3}\right\rangle .\langle 1,1,0\rangle=a_{1}+a_{2}=0
\end{aligned} \quad \text { One solution will be }\left\{\begin{array}{ll}
a_{1}=3 \\
a_{2}=-3 & \vec{b}=\langle 3,-3,1\rangle \\
a_{3}=1
\end{array}\right]
$$

- Orthogonal Projections in \mathbb{R}^{n}

The orthogonal projection of \vec{w} onto \vec{u} is denoted by $\operatorname{proj}_{\vec{w}} \vec{u}$. It is also called the component of \vec{w} parallel to \vec{u}.

The component of \vec{w} normal (or orthogonal) to \vec{u} is the vector

$$
\vec{w}-\operatorname{proj}_{\vec{w}} \vec{u}
$$

Formula for projection of \vec{b} onto \vec{a} :

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \frac{\vec{a}}{|\vec{a}|}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \vec{a}=\left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a}
$$

Proof: Suppose $\operatorname{proj}_{\vec{a}} \vec{b}=x \vec{a}$. Then, $\vec{a} \cdot(\vec{b}-x \vec{a})=0$. That is $\vec{a} \cdot \vec{b}-\vec{a} \cdot x \vec{a}=0$. Hence $\vec{a} \cdot \vec{b}=x(\vec{a} \cdot \vec{a})$ and so $x=\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}$.

Example 6. Find the orthogonal projection of $\vec{b}=\langle 7,6,3\rangle$ onto $\vec{a}=\langle 4,2,0\rangle$.

$$
\operatorname{proj}_{\vec{a}} \vec{b}=\left(\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}}\right) \vec{a}=\left(\frac{40}{20}\right)\langle 4,2,0\rangle=\langle 8,4,0\rangle
$$

Example 7. Find the components of $\vec{F}=\langle 1,2,6\rangle$ parallel and normal to $\vec{v}=\langle 1,1,2\rangle$.

The components of \vec{F} parallel to \vec{v} is $\operatorname{proj}_{\vec{v}}(\vec{F})=\left(\frac{\vec{F} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v}=\frac{15}{6}\langle 1,1,2\rangle=\langle 5 / 2,5 / 2,5\rangle$
The components of \vec{F} normal to \vec{v} is
$\vec{F}_{n}=\vec{F}-\operatorname{proj}_{\vec{v}}(\vec{F})=\langle-3 / 2,-1 / 2,1\rangle$

One application of projection in physics is calculating the work W by a constant force F moving an object through a distance d. If the force F is along the line of motion, then the work $W=F d$.

Definition.

If F in \mathbb{R}^{n} has an angle θ with the line of motion, then the work is defined by $W=$ $(|\vec{F}| \cos \theta)|\vec{d}|$. Moreover

$$
W=|\vec{F}||\vec{d}| \cos \theta=\vec{F} \cdot \vec{d} .
$$

Example 8. A cart is pulled 100 meters along a horizontal path with a force of 60 N exerted at an angle of 25° above the horizontal. Find the work done by the force.

The work done by the force is

$$
W=\vec{F} \cdot \vec{d}=|\vec{F}||\vec{d}| \cos \theta=60(100) \cos 25^{\circ} \approx 5437 N \cdot m
$$

Example 9. A force is given by a vector $\vec{F}=\langle-1,2,4\rangle$ and move a particle from the point $A(2,2,1)$ to the point $B(0,3,2)$. Find the work done by the force.

The displacement vector $\vec{d}=\overrightarrow{A B}=B-A=\langle-2,1,1\rangle$.
The work is $W=\vec{F} \cdot \vec{d}=2+2+4=8$.

