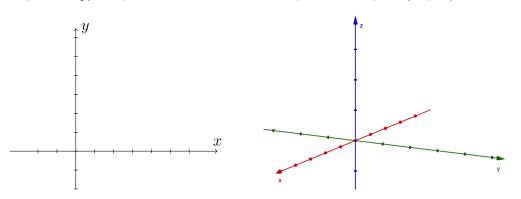
§1.1 Euclidean space \mathbb{R}^n

2D space \mathbb{R}^2 . 2-dimensional coordinate system for a plane \mathbb{R}^2 using coordinate axes, labeled by the *x*-axis and *y*-axis. A place \mathbb{R}^2 is divided by **4 quadrants**. The arrow direction is the **positive** direction. A **point** in \mathbb{R}^2 is described by an order pair (x, y).

3D space \mathbb{R}^3 . The 3-dimensional coordinate system for \mathbb{R}^3 include coordinate axes, labeled by the *x*-axis, *y*-axis, and *z*-axis following the **right-hand rule**. \mathbb{R}^3 is divided by 8 octants. The 3-dimensional space \mathbb{R}^3 can be written as Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$). A point in \mathbb{R}^3 is described by an order pair (x, y, z).

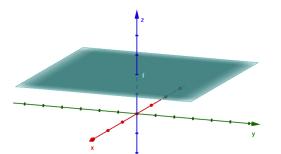


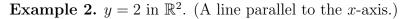
The **Projection** of a point P(a, b, c) onto the xy-plane is (a, b, 0), i.e. we drop perpendicular from P to the xy-plane.

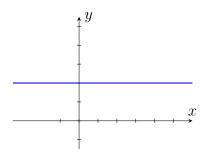
The Projection of a point (a, b, c) onto the *yz*-plane is (0, b, c). The Projection of a point (a, b, c) onto the *xz*-plane is (a, 0, c).

An equation in the variables x and y is a **curve** in \mathbb{R}^2 . An equation in the variables x, y and z is a **surface** in \mathbb{R}^3 .

Example 1. z = 2 in \mathbb{R}^3 . (A plane parallel to the *xy*-plane.)







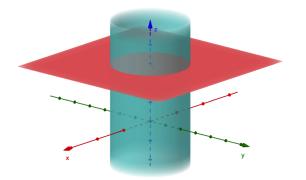
Use https://www.geogebra.org/3d to look at the following examples.

Example 3. y = 2 in \mathbb{R}^3 . (A plane parallel to the *xz*-plane.)

Example 4. Which points (x, y, z) in \mathbb{R}^3 satisfy $x^2 + y^2 = 4$.

Example 5. Describe and sketch the surface by x = y in \mathbb{R}^3 .

Example 6. Which points (x, y, z) in \mathbb{R}^3 satisfy $x^2 + y^2 = 4$ and z = 3.



Definition. Distance Formula in \mathbb{R}^n

The **distance** |AB| between the points A $(a_1, a_2, ..., a_n)$ and B $(b_1, b_2, ..., b_n)$ in \mathbb{R}^n is

$$|AB| = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

In particular, the **distance** $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2) \in \mathbb{R}^3$ is

$$|P_1P_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Example 7. Find the distance from P(1,2,3) to Q(3,4,2).

$$|PQ| = \sqrt{(1-3)^2 + (2-4)^2 + (3-2)^2} = \sqrt{4+4+1} = 3.$$

Example 8. (Equation of a Sphere) Equation for a sphere of radius r and center (h, k, l) is

$$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}.$$

In particular, if the center is the origin (0, 0, 0), then the equation of the sphere is

$$x^2 + y^2 + z^2 = r^2$$

Proof of the distance formula in \mathbb{R}^3 : $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are two points in \mathbb{R}^3 Let $A = (x_2, y_1, z_2)$ and $B(x_2, y_2, z_1)$. By Pythagorean Theorem, $|P_1B|^2 = |P_1A|^2 + |AB|^2$ and

$$|P_1P_2|^2 = |P_1B|^2 + |BP_2|^2$$

= $|P_1A|^2 + |AB|^2 + |BP_2|^2$
= $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$

Example 9. Determine whether the points A(2,4,2), B(3,7,-2), and C(1,3,3) lie on a straight line.

By calculation, $|AB| = \sqrt{26}$, $|AC| = \sqrt{3}$, $|BC| = \sqrt{45}$. So, sum of 2 line segments does not equal to the other one. Hence, they are not on a straight line.

Example 10. Find the equation of a sphere with center (2, -5, 1) and radius 2. How does this sphere intersect the 3 coordinate planes?

 $(x-2)^2 + (y-5)^2 + (z-1)^2 = 4$ 1. Intersect with xy-plane. The equation for xy-plane is z = 0. The intersection is given by $(x-2)^2 + (y-5)^2 = 3$, which is a circle on xy-plane of radius $\sqrt{3}$. 2. Intersect with xz-plane. No intersection. 3. Intersect with yz-plane.

A single point (-5, 1).

Example 11. Find the equation of a sphere if one of its diameters has endpoints A(2, -1, 1) and B(-2, -3, 2).

The diameter $d = |AB| = \sqrt{21}$, so the radius $r = \sqrt{21}/2$. Center point of the sphere is the middle of AB given by (0, -2, 3/2)Equation of the sphere is $x^2 + (y+2)^2 + (z-3/2)^2 = 21/4$.

The equation of a sphere with center (2, -5, 1) and radius 2 is

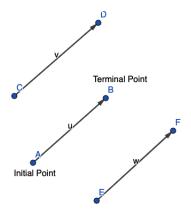
Example 12. Describe the region represented by the inequality $x^2 + y^2 + z^2 > 2z$.

 $x^2 + y^2 + z^2 > 2z$ is equivalent to $x^2 + y^2 + z^2 - 2z > 0$, which is equivalent to $x^2 + y^2 + (z-1)^2 - 1 > 0$ or $x^2 + y^2 + (z-1)^2 > 1$ The region is \mathbb{R}^3 with a solid ball of radius 1 with center (0, 0, 1) removed.

§1.2 \mathbb{R}^n as a vector space

A vector in \mathbb{R}^n is a quantity that has magnitude and direction. A vector is often represented by a directed line segment, denoted by **u** or \vec{u} . (A detailed study of vector space is in class Math-2331 Linear Algebra)

The displacement vector \overrightarrow{AB} a directed line segment from initial point A to terminal point B.



The displacement vector \overrightarrow{AB} has the same magnitude(length) and the same direction as \overrightarrow{CD} (and \overrightarrow{EF}) even though the are in a different position.

We say that \overrightarrow{AB} and \overrightarrow{CD} are **equivalent** (or equal) and we write $\overrightarrow{AB} = \overrightarrow{CD}$.

Zero vector has no direction, denoted by $\vec{0}$.

A vector \vec{v} starting from **origin** to a point $P((a_1, a_2) \text{ or } (a_1, a_2, a_3))$, depending on \mathbb{R}^2 or \mathbb{R}^3) is called the **position vector** of P. The coordinates are called the **components** of \vec{v} . We denote $\vec{v} = \langle a_1, a_2, a_3 \rangle$ or $\vec{v} = (a_1, a_2, a_3)$ as in the book.

Given the points $A(x_1, x_2, x_3)$ and $B(x_2, y_2, z_2)$, the vector \vec{v} with representation \overrightarrow{AB} is

$$\vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

Example 1. Find the displacement vector represented by the directed line segment with initial point A(1, -2, 3) and terminal point B(2, 1, 5).

Answer: $\overrightarrow{AB} = \langle 1, 3, 2 \rangle$.

The **magnitude** or **length** of the vector $v = \langle a, b, c \rangle$ in \mathbb{R}^3 is

$$|\vec{v}| = \sqrt{a^2 + b^2 + c^2}.$$

The length of $v = \langle a, b \rangle$ in \mathbb{R}^2 is $|\vec{v}| = \sqrt{a^2 + b^2}$.

The magnitude of the velocity vector \vec{v} is called **speed**.

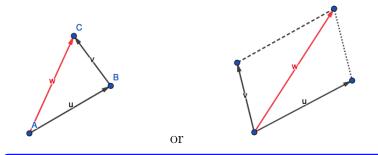
Example 2. The speed of a velocity vector $\vec{v} = \langle 3, 4 \rangle$ m/s is $|\vec{v}| = 5$ m/s. **Example 3.** Consider the force vector $\vec{F} = \langle 1, 3, 2 \rangle$ Newtons. Find the magnitude of \vec{F} .

The magnitude of \vec{F} is $|\vec{F}| = \sqrt{1+9+4} = \sqrt{14}$ Newtons

Operations of vectors

1. Sum of two vectors

The Triangle Law for $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ and the Parallelogram Law for $\vec{w} = \vec{u} + \vec{v}$.



If $\vec{u} = \langle a_1, a_2, \dots, a_n \rangle$ and $\vec{v} = \langle b_1, b_2, \dots, b_n \rangle$, then the **sum** is coordinate-wise sum

 $\vec{u} + \vec{v} = \langle a_1 + b_1, a_2 + b_2, \dots, a_n + b_n \rangle$

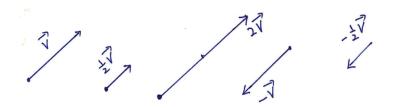
2. Scalar multiplication

If $c \in \mathbb{R}$ is a scalar and \vec{v} is a vector, then the scalar multiplication $c\vec{v}$ is the vector whose length |c| is times the length of \vec{v} .

The direction of $c\vec{v}$ is the same as \vec{v} if c > 0. The direction of $c\vec{v}$ is opposite to \vec{v} if c < 0. If c = 0 or $\vec{v} = \vec{0}$, then $c\vec{v} = \vec{0}$.

If $\vec{u} = \langle a_1, a_2, \dots, a_n \rangle$ and $k \in \mathbb{R}$, then the scalar multiplication is

 $k\vec{u} = \langle ka_1, ka_2, \dots, ka_n \rangle$



Theorem.

Two vectors \vec{v} and \vec{w} have the the same direction if and only if $\vec{v} = k\vec{w}$ for some k > 0. Two vectors \vec{v} and \vec{w} have the opposite direction if and only if $\vec{v} = c\vec{w}$ for some c < 0. 3. The difference of two vectors can be defined using sum and scalar product:

$$\vec{u} - \vec{v} = \vec{u} + (-1)\vec{v}$$

Example 4. If $\vec{v} = \langle a_1, a_2 \rangle$ and $\vec{w} = \langle b_1, b_2 \rangle$, then $\vec{v} + \vec{w} = \langle a_1 + b_1, a_2 + b_2 \rangle$; $\vec{v} - \vec{w} = \langle a_1 - b_1, a_2 - b_2 \rangle$; and $c\vec{v} = \langle ca_1, ca_2 \rangle$.



The magnitude of $\vec{a} - \vec{b}$ is called the distance of \vec{a} and \vec{b} .

Example 5. If $\vec{a} = \langle 2, 3, 0 \rangle$ and $\vec{b} = \langle -1, 2, 4 \rangle$, find $|\vec{a}|, \vec{a} + \vec{b}, \vec{a} - \vec{b}, 3\vec{b}$, and $2\vec{a} + 3\vec{b}$.

$$|\vec{a}| = \sqrt{13}; \ \vec{a} + \vec{b} = \langle 1, 5, 4 \rangle; \ \vec{a} - \vec{b} = \langle 3, 1, -4 \rangle; \ 3\vec{b} = \langle -3, 6, 12 \rangle; \ 2\vec{a} + 3\vec{b} = \langle 1, 12, 12 \rangle.$$

Theorem. Algebraic Properties

For \vec{u} and \vec{w} vectors in \mathbb{R}^n , and c, d scalars, the following algebraic properties hold. (1) $\vec{u} + \vec{w} = \vec{w} + \vec{u}$ (2) $(\vec{u} + \vec{v}) + \vec{w} = \vec{v} + (\vec{u} + \vec{w})$ (3) $\vec{u} + \vec{0} = \vec{u}$ (4) $\vec{u} + (-\vec{u}) = \vec{0}$ (5) $c(\vec{u} + \vec{w}) = c\vec{u} + c\vec{w}$ (6) $(c + d)\vec{u} = c\vec{u} + d\vec{u}$ (7) $c(d\vec{u}) = (cd)\vec{u}$ (8) $1\vec{u} = \vec{u}$

Theorem.

$$|k\vec{v}| = |k| \cdot |\vec{v}|$$

Example 6. Suppose $|\vec{v}| = 3$, what is the magnitude of $-2\vec{v}$?

 $|-2\vec{v}| = 2|\vec{v}| = 6$

Standard basis vectors in \mathbb{R}^3 : $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$. We can express any vector $\vec{v} = \langle a, b, c \rangle$ as a linear combination of \vec{i}, \vec{j} and \vec{k} , as

$$\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}.$$

Example 7. If $\vec{a} = 2\vec{i} + \vec{j} - 4\vec{k}$ and $\vec{b} = 3\vec{i} - 6\vec{j}$, express the vector $3\vec{a} - 2\vec{b}$ in terms of \vec{i} , \vec{j} and \vec{k} .

$$3\vec{a} - 2\vec{b} = 3(2\vec{i} + \vec{j} - 4\vec{k}) - 2(3\vec{i} - 6\vec{j})$$

= $6\vec{i} + 3\vec{j} - 2\vec{k} - 6\vec{i} + 12\vec{j}$
= $15\vec{j} - 12\vec{k}$

Definition.

A unit vector is a vector whose length is 1. For example, \vec{i} , \vec{j} and \vec{k} are unit vectors. In general, if $\vec{a} \neq \vec{0}$, then the unit vector that has the same direction as \vec{a} is

$$\vec{u} = \frac{1}{|\vec{a}|}\vec{a} = \frac{\vec{a}}{|\vec{a}|}$$

It is called the **direction** of \vec{a} .

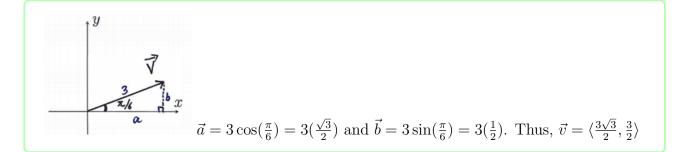
Example 8. Find the unit vector in the direction of $\vec{a} = -2\vec{i} - 3\vec{j} + \vec{k}$.

$$\begin{aligned} |\vec{a}| &= \sqrt{4+9+1} = \sqrt{14}.\\ \text{So, the unit vector is } \frac{\vec{a}}{\sqrt{14}} &= \frac{-2\vec{i}-3\vec{j}+\vec{k}}{\sqrt{14}} = -\frac{2}{\sqrt{14}}\vec{i} - \frac{3}{\sqrt{14}}\vec{j} + \frac{1}{\sqrt{14}}\vec{k} \end{aligned}$$

Example 9. Find the vector \vec{u} in the same direction of $\vec{a} = 1\vec{i} - 2\vec{j} + \vec{k}$ with magnitude 5.

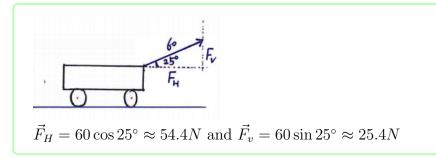
 $\vec{u} = 5(\vec{a}/|\vec{a}|) = 5(1\vec{i} - 2\vec{j} + \vec{k})/\sqrt{6}$

Example 10. If \vec{v} lies in the first quadrant and make an angle of $\pi/6$ with the positive x-axis and $|\vec{v}| = 3$, find \vec{v} in component form.



Example 11. A cart is pulled along a horizontal path with a forth of 60 N exerted at an angle of 25° above the horizontal.

Find the horizontal and vertical components of the force.



Theorem. Newton's 2nd Law of Motion

Let \vec{F} is the net(total) force vector acting on an object, m is the objects mass, and \vec{a} is the acceleration of the object. Newton's 2nd Law of Motion is given by the scalar product:

 $\vec{F}=m\vec{a}$

Example 12. If $F_1 = 3\vec{i} - 3\vec{j} + \vec{k}$, $F_2 = \vec{i} - 4\vec{j} + 3\vec{k}$, and $F_3 = -2\vec{i} + 5\vec{j}$ acts on an object with mass 2 kilograms, determine the acceleration *a* of the object, and the magnitude of the acceleration.

The net force $F = F_1 + F_2 + F_3 = 2\vec{i} - 2\vec{j} + 4\vec{k}$. By Newton's 2nd Law of Motion, the acceleration is $\vec{a} = \frac{1}{2}\vec{F} = \langle 1, -1, 2 \rangle \ m/s^2$. The magnitude of the acceleration is $|\vec{a}| = \sqrt{6} \ m/s^2$.

Newtons Law of Universal Gravitation: A mass M exerts a gravitational attraction force on the other mass m,

$$F_{M \leftarrow m} = \frac{GMm}{|\vec{r}|^2} \left(\frac{\vec{r}}{|\vec{r}|}\right)$$

Here \vec{r} is the displacement vector $\vec{r} = P_{Mm} = P_M - P_m$. G is universal gravitational constant, $G = 6.67 \times 10^{-11} \ m^3/(kg \cdot s^2)$

The force $F_{m \leftarrow M}$ that m exerts on M is $F_{m \leftarrow M} = -F_{M \leftarrow m}$