Example 1. The following table gives the number (in thousands) of laptops sold per month after it is released. Show work and give units for each answer.

\# of months after it released	2	4	6	8	10	12	14
\# laptops sold (thousand) per month	580	560	540	330	200	140	120

(a). Let x stand for the number of months after the laptops released, and let $f(x)$ stand for the number of laptops (in thousands) sold per month. Fit the best model to the data. Round all coefficients to 3 decimal places.
(b). According to the model in part (a), how many laptops are sold in the 7 months? in the 11 months? Round to 1 laptops.
(c). Use the model in part (a) to approximate the average rate of change of laptops sold per month between the 7 months and the 11 months.

Example 2. The following data shows a company spending on marketing in these years. Show work and give units for each answer.

year	2008	2009	2010	2011	2012	2013	2014
Spending(million dollars)	23.07	24.47	26.21	30.36	38.31	46.38	57.96

(a). Let x stand for the number of years since 2007, and let $g(x)$ stand for the money spending on market in millions. Fit the best model to the data. Round all coefficients to 3 decimal places.
(b). Use the model in part (a) to estimate the company spending on market in millions in 2015.

How the models looks like

$\log s+c h$
medel

