Math1231 Lecture 2 Using TI-84(plus)

He Wang

Northeastern University

September 10, 2014

Scatter Plots and Models on the TI-84

Example 1. The following table gives the number (in thousands) of laptops sold per month after it is released. Show work and give units for each answer.

\# of months after it released	2	4	6	8	10	12	14
\# laptops (thousands per month)	580	560	540	330	200	140	120

(a). Let x stand for the number of months after the laptops released, and let $f(x)$ stand for the number of laptops (in thousands) sold per month. Fit the best model to the data. Round all coefficients to 3 decimal places.

Using TI-84:(ClassPacket p.41)

Using TI-84:(ClassPacket p.41)
Press STAT, get graph1, (then press ENTER get graph2)

Using TI-84:(ClassPacket p.41)
Press STAT, get graph1, (then press ENTER get graph2)

Enter data in L1 and L2.

L1	L2	L3	2
z	5 B 0	------	
4	56		
6	540		
10	330		
12	140		
14			
$L 2(7)=12 \mathrm{~V}$			

Press $\mathbf{Y}=$. Press Clear.

$$
\begin{aligned}
& \text { Floti Fiotz Fiots } \\
& \sqrt{V}= \\
& \forall z= \\
& \forall z= \\
& V_{4}= \\
& \checkmark 5= \\
& \because 6= \\
& \forall 7=
\end{aligned}
$$

Press $\mathbf{Y}=$. Press Clear.

$$
\begin{aligned}
& \text { F10ti Flotz Flots } \\
& v 1= \\
& \forall z= \\
& \forall 3= \\
& \forall 4= \\
& \text { Y5= } \\
& \text { V6= } \\
& \forall 7=
\end{aligned}
$$

Press 2nd. Press $\mathbf{Y}=$. (This gives STAT PLOT)

Press $\mathbf{Y}=$. Press Clear.

$$
\begin{aligned}
& \text { Floti Flotz Fiots } \\
& \forall 1= \\
& \forall z= \\
& * 1 / 2= \\
& * 14= \\
& \because 15= \\
& \because 16= \\
& \text { *17 } 17=
\end{aligned}
$$

Press 2nd. Press $\mathbf{Y}=$. (This gives STAT PLOT)

Make sure that PLOT1 is ON. Make sure \mathbf{X} List is set to $\mathbf{L 1}$ and \mathbf{Y} List is set to $\mathbf{L 2}$.

Press ZOOM.

FOTDH MEMORY
 1：ZBox
 2：200m In
 3：Zoom Dut．
 4：ZDecimal
 5：Z5atare
 6：25t ardard
 7．$+2 \operatorname{Tr} \mathrm{i} 9$

Press ZOOM.

FOTH MEMORY
 1:ZBox
 2: 200 m In
 3: Zoom Dut.
 4: ZDecimal
 5: Z5atare
 6: 25t ardard
 7.2Tri9

Press 9.

Press ZOOM.

FOTH MEMORY
 1: ZBox
 2: 200 m In
 3: Zoom out.
 4: ZDecimal
 5: Z5atuare
 6: 25t and ard
 7.2Tri9

Press 9.

Press STAT,(graph1), then Press \rightarrow (right arrow button) (graph2)

Press STAT,(graph1), then Press \rightarrow (right arrow button) (graph2)

Losfris
Xlist:L1
Ylist:L
FresList:
Store RegEQ:
Calculate

Press STAT,(graph1), then Press \rightarrow (right arrow button) (graph2)

For TI-83(plus): Logistic (L1,L2,Y1)

Press STAT,(graph1), then Press \rightarrow (right arrow button) (graph2)

For TI-83(plus): Logistic (L1,L2,Y1)
4 Linear, 5 Quadratic, 6 Cubic, 0 Exponential, B Logistic model

WRRS W-WHRTE
1日Function...
2:Parametric...
3:Polar
4: Dr $10 f$ f...

Press VARS,(graph1) then press \rightarrow (right arrow) (Y-VARS)(graph2)

WRES U-WHRE
1日Function...
2:Parametric...
3:Polar
4: 07 Ff f ...

Press ENTER,

Press VARS,(graph1) then press \rightarrow (right arrow) (Y-VARS)(graph2)

Press ENTER,

WRRS W-WHRT
1日Function...
2:Farametric...
3:Polar
4: 017 Of f...

The model will appear on screen, and the formula for the model will be in the Y 1 spot under $\mathrm{y}=$.

The model will appear on screen, and the formula for the model will be in the Y 1 spot under $\mathrm{y}=$.

$$
\begin{aligned}
& \text { Losistic }
\end{aligned}
$$

ヨ=. 0359454
$\begin{aligned} & 6=-3925317 \\ & 0=6462626\end{aligned}$

Answer to Question (a):

The model will appear on screen, and the formula for the model will be in the Y 1 spot under $\mathrm{y}=$.

$$
\begin{aligned}
& \text { Losirtic }
\end{aligned}
$$

$9=.03539454$
$\mathrm{~b}=-6.89 .61627217$

Answer to Question (a):
$f(x)=\frac{c}{1+a \cdot e^{-b x}}$ thousands per month.
$a=0.033, b=-0.395, c=648.610$

Press ZOOM, press 9 to see how the model fit the data.(not for the question)

(b). According to the model in part (a), how many laptops are sold in the 7 months? in the 11 months? Round to 1 laptop.
(b). According to the model in part (a), how many laptops are sold in the 7 months? in the 11 months? Round to 1 laptop.

(b). According to the model in part (a), how many laptops are sold in the 7 months? in the 11 months? Round to 1 laptop.

Answer:
$f(7)=423.611$ thousands per month.
$f(11)=181.119$ thousands per month.
(c). Use the model in part (a) to approximate the average rate of change of laptops sold per month between the 7 months and the 11 months.
(c). Use the model in part (a) to approximate the average rate of change of laptops sold per month between the 7 months and the 11 months. Answer:

$$
\frac{f(11)-f(7)}{11-7}=\frac{181.119-413.611}{4}=-60.623
$$

Youtube link for these two examples

For Example 1:

Step A, https://www.youtube.com/watch?v=7bVsqdZuDvo Step B, https://www.youtube.com/watch?v=tgU4BiZsKyQ Step C, https://www.youtube.com/watch?v=_nSuDd905bs Step D, https://www.youtube.com/watch?v=FOtEorWgSYo

For Example 2:

Step A, https://www.youtube.com/watch?v=zS4WgTx4LRU Step B, https://www.youtube.com/watch?v=1JGlVJRO_x8 Step C, https://www.youtube.com/watch?v=8rQu9MR7lps

Example 2. The following data shows a company spending on marketing in these years. Show work and give units for each answer.

year	2008	2009	2010	2011	2012	2013	2014
Spend(million\$)	23.07	24.47	26.21	30.36	38.31	46.38	57.96

(a). Let x stand for the number of years since 2007, and let $g(x)$ stand for the money spending on market in millions. Fit the best model to the data. Round all coefficients to 3 decimal places.

Example 2. The following data shows a company spending on marketing in these years. Show work and give units for each answer.

year	2008	2009	2010	2011	2012	2013	2014
Spend(million\$)	23.07	24.47	26.21	30.36	38.31	46.38	57.96

(a). Let x stand for the number of years since 2007, and let $g(x)$ stand for the money spending on market in millions. Fit the best model to the data. Round all coefficients to 3 decimal places. Entering data on the TI84: Press STAT then press ENTER (or press 1)

Enter data in L1 and L2. Press $\mathbf{Y}=$. Press Clear.

L1	Lz	Lz	2
1	23.07	------	
$\underline{2}$	24.47		
4	30.36		
5	31.31		
6	46. ${ }^{\text {c }}$		
	-7\%		

F1oti Flotz Flots	
$\sqrt{ } \mathrm{Y}_{1}=$	
$\checkmark \mathrm{V}=$	
V3=	
$\cdots 4=$	
$\mathrm{Y}_{5}=$	
V6=	
$\vee 7=$	

Press 2nd. Press $\mathbf{Y}=$. (This gives STAT PLOT) then ENTER (or 1).

Press ZOOM.

FOTH MEMORY
 1: ZBox 2: 2 oom In 3: Zoom Dut. 4: ZDecimal 5: Z5atare 6: 2starndard 7.2Trig

Press 9.

Exponential model

Press STAT then Press \rightarrow (right arrow button)

Find 0 ExpReg

```
EDIT [EHLD TESTS
7tQuartrReg
8:LinReg(a+bx)
9:LnReg
6: ExFReg
A: FworReg
8#Logistic
L+SinReg
```

EXPFisi
Xlist:L1
Ylist:Lz
FresList:
Store RegED:
Calculate

For TI-83(plus) calculator: ExpReg (L1,L2,Y1)

Press VARS then press \rightarrow (right arrow button) (Y-VARS)

```
WHRT
1:Window...
2:Z00M...
3:GDB
4:Picture...
5:Statistics..
6:Table...
7:String...
```


Press ENTER,

WRES W-WFRE
1日Functioñ...
2:Parametric...
3:Polar
4: Or/0ff...

EXPFA옹
Xlist:L1 Ylist:Lz
FreシList:
Store RegEQ: Y1
Calculate

The model will appear on screen, and the formula for the model will be in the Y 1 spot under $\mathrm{y}=$.

Answer to Question (a):
$g(x)=a \cdot b^{x}$ million dollars.
$a=17.752, b=1.171$

Press ZOOM, press 9 to see how this function fit. (Not for question)

(b). Use the model in part (a) to estimate the company spending on market in millions in 2015.

Answer:
$g(8)=62.800$ million dollars.

