Optimization using Ti- 84
 (Using Ti-84 solving an equation)

He Wang
Northeastern University

October 29, 2015

Optimization using Ti-84 The following function is from a project in the last year.
The Demand Function $D(x)$

$$
D(x)=\frac{1263.36}{1+0.09 e^{0.28 x}}
$$

The Revenue Function $R(x)$

$$
R(x)=x D(x)=\frac{1263.36 x}{1+0.09 e^{0.28 x}}
$$

Question: Find the price which gives the maximal revenue. $0<x<30$

Method: We need to solve the equation $R^{\prime}(x)=0$ using Ti-84.

Patil Plotz Plots
$V_{1}=1263.36 \times /{ }^{\text {c }}$,
V31
$\mathrm{Y}_{4}=$
V5=
$\times \mathrm{Y}_{6}=$
VOTO MEMORY
5: 75suare
6: ZStandard
7:
8: Integer
9:4200mFit.

Functions $-->$ Window $-->$ Zoom 0: ZoomFit
Test value $Y 1(2)=2182.79731$ to make sure you function is correct

2ed/Calc/Zero $-->$ Left bound $-->$ Right bound

Solution for this example

The Demand Function $D(x)$

$$
D(x)=\frac{1263.36}{1+0.09 e^{0.28 x}}
$$

The Revenue Function $R(x)$

$$
R(x)=x D(x)=\frac{1263.36 x}{1+0.09 e^{0.28 x}}
$$

Find the price which gives the maximal revenue. Solution:

$$
x=7.9071917
$$

Find inflection point using TI-84 ClassPacket page49.
The Demand Function $D(x)$

$$
D(x)=\frac{1263.36}{1+0.09 e^{0.28 x}}
$$

Q: Find the inflection point (x and y coordinates) for the Demand function.
Method: We need to solve equation $D^{\prime \prime}(x)=0$.
Step1:

$$
D^{\prime}(x)=-1263.36\left(1+0.09 e^{0.28 x}\right)^{-2}\left(0.09 e^{0.28 x}\right)(0.28)
$$

Step2: $Y 1=D^{\prime}(x)$ and $\left.Y 2=n \operatorname{Deriv}(Y 1, X, X)=\frac{d}{d X}(Y 1) \right\rvert\, X=X$
Step3: Set Window: $X \min =0$ and $X \max =30$
Step4: Zoom -->0:ZoomFit
Step5: 2ed/Calc/Zero
Step6: Left Bound, Right Bound
Step 7: $X=8.5998057$
Step 8: $D(8.60)=631.662821$

Solution to question 2 in Quiz6 Review.

$$
h(x)=-x^{3}+9 x^{2}-30+20
$$

Question(a). Find the inflection point of $h(x)$. Both x and y coordinates. Solutions:

$$
\begin{gathered}
h^{\prime}(x)=-3 x^{2}+18 x-30 \\
h^{\prime \prime}(x)=-6 x+18=0 \\
x=3 \\
h(3)=-16
\end{gathered}
$$

The inflection point of $h(x)$ is $(3,-16)$.

Question(b). Graph $h(x)$ using TI-84 over interval $-2 \leq x \leq 6$. Write down Window Setting.
Decide what kind of point it is (Fastest increase, Slowest increase...).

WIFDOW

Functions $-->$ Window

```
Zoom 0: ZoomFit
The inflection point is the slowest decreasing point
EODI MEMORY
4TZDEcimal
5:25%uare
6: 25tandarad
7:ZTrig
8:ZInteger*
9: 200m5t.at
GHZOOmFit.
```



```
Warning: If you get an Error here.
First, check if you use (-) for negative.
Second, check if you have any data in STAT/EDIT/. If you don't have data here, put 0 in L1 and 1 in L2.
```

Press Window again. You will see the window setting:

$X \min =-2, X \max =6, Y \min =-52, Y \max =124$

