Optimization using Ti- 84
 (Using Ti-84 solving an equation)

He Wang
Northeastern University

October 28, 2015

1.Using Ti-84 solving an equation

Example1: Solving $f(x)=6 x^{3}-13 x^{2}-99 x+70=0$
$-10<x<10$ and $-230<y<230$
$Y 1=6 x^{3}-13 x^{2}-99 x+70$ for $-10<x<10$ and $-230<y<230$
F10t1 F10tz F10t3
Y1日 $6 X^{3}-13 X^{2}-99 X^{2}$

Function $-->$ Window $-->$ Graph $-->$ 2nd/Calc/Zero

Left bound $-->$ Right bound $-->$ The first solution $x=3.5$

Left bound $-->$ Right bound $-->$ The 2ed solution $x=0.666=2 / 3$

Left bound $-->$ Right bound $-->$ The third solution $x=5$
2. Optimization using Ti-84 The following function is from a project in the last year.
The Demand Function $D(x)$

$$
D(x)=\frac{1263.36}{1+0.09 e^{0.28 x}}
$$

The Revenue Function $R(x)$

$$
R(x)=x D(x)=\frac{1263.36 x}{1+0.09 e^{0.28 x}}
$$

Question: Find the price which gives the maximal revenue. $0<x<30$

Method: We need to solve the equation $R^{\prime}(x)=0$ using Ti-84.

Patil Plotz Plots
$V_{1}=1263.36 \times /{ }^{\text {c }}$,
V31
$\mathrm{Y}_{4}=$
V5=
$\times \mathrm{Y}_{6}=$
VOTO MEMORY
5: 75suare
6: ZStandard
7:
8: Integer
9:4200mFit.

Functions $-->$ Window $-->$ Zoom 0: ZoomFit
Test value $Y 1(2)=2182.79731$ to make sure you function is correct

2ed/Calc/Zero $-->$ Left bound $-->$ Right bound
2. Optimization using Ti-84 The following function is from a project in the last year.
The Demand Function $D(x)$

$$
D(x)=\frac{1263.36}{1+0.09 e^{0.28 x}}
$$

The Revenue Function $R(x)$

$$
R(x)=x D(x)=\frac{1263.36 x}{1+0.09 e^{0.28 x}}
$$

Find the price which gives the maximal revenue.
Solution:
$x=7.9071917$

