Math1231 Lecture 13

He Wang
Northeastern University

October 7, 2015

Example1

A chain of music stores sells CDs. The demand, in hundreds of CDs, is modelled by the function:

$$
D(x)=56.6(0.93)^{x}
$$

where x is the price of a CD in dollars.
(a) Find the function for the rate of change of demand function.

Example1

A chain of music stores sells CDs. The demand, in hundreds of CDs, is modelled by the function:

$$
D(x)=56.6(0.93)^{x}
$$

where x is the price of a CD in dollars.
(a) Find the function for the rate of change of demand function.
$D^{\prime}(x)=56.6 \ln (0.93) 0.93^{x}$ hundreds CDs per dollar.

Example1

A chain of music stores sells CDs. The demand, in hundreds of CDs, is modelled by the function:

$$
D(x)=56.6(0.93)^{x}
$$

where x is the price of a CD in dollars.
(a) Find the function for the rate of change of demand function.
$D^{\prime}(x)=56.6 \ln (0.93) 0.93^{x}$ hundreds CDs per dollar.
(b) Fill in the following table. Round numerical results in the table to three decimal places.

				Units
\times	10	15	20	
Demand				
Rate of change of Demand				

$$
\begin{aligned}
& \text { 7lof Fide Fiots } \\
& \text { Y1日 } 6.6(6.9)^{\circ} \\
& \left.\forall \overline{\mathrm{Y}} \frac{\mathrm{~d}}{\mathrm{dN}} \mathrm{Y} \mathrm{Y}_{1}\right\rangle\left.\right|_{\mathrm{X}=\mathrm{H}} \\
& \vee V_{4}= \\
& \text { V5= }
\end{aligned}
$$

X	Y1	$Y \mathrm{Y}$
Fil	2789	-1. ${ }^{\text {明 }}$
11	\% ${ }^{6}$	-1.719
$1{ }^{1}$	2\% ${ }^{2}$	-1. ${ }^{\text {- }}$
14	10.49	-1.89
16	1.72	-1.2㤟
X=10		

X	Y1	$Y 2$	8	Y1	$Y \mathrm{Y}$
m_{11}	\% 78	-1.898	4	$2{ }^{2} .48$	-1.487
11.	$\stackrel{5}{69}$	-1.719	${ }_{15}^{15}$	12.2	-1. ${ }^{\text {- }}$ 明
14	20.434	-1.499\%	${ }_{18}^{17}$	15.488	${ }_{-1.1129}$
${ }_{15}^{15}$	19.75	-1.8.8	$\underline{19}$	13.5	-1.965
$X=16$			K=14		

X	Y1	Yz	X	$Y 1$	Yz
18		－1．${ }^{\text {－}}$ 明	94	20.49	－1．488
${ }_{12}^{11}$	E， 6	－1．719	${ }_{15}$		－1．${ }^{\text {－}}$ 砶
$1{ }^{12}$	$2{ }^{2} 84$	－1．599	17	${ }_{16}^{16.498}$	－1．1．196
15	10．492	－1．${ }^{-1.488}$	${ }^{19}$	14．E的	－1．118
16	17.72	－1．2晈	\％	13．5．	． 681
X $=16$			$\overline{\mathrm{K}}=14$		

				Units
x	10	15	20	dollar
Demand	27.393	19.057	13.258	hundreds CDs
Rate of change of Demand	-1.988	-1.383	-0.962	hundreds／dollar

Example2(Similar as Textbook 3.4 hw34)

Example(Similar as Textbook 3.4 hw34) The tuition x years since 1990 at a University is modeled to be

$$
T(x)=25012 e^{0.054 x} \text { dollars }
$$

(a) Write the rate of change formula for tuition.

Example2(Similar as Textbook 3.4 hw34)

Example(Similar as Textbook 3.4 hw34) The tuition x years since 1990 at a University is modeled to be

$$
T(x)=25012 e^{0.054 x} \text { dollars }
$$

(a) Write the rate of change formula for tuition.
$T^{\prime}(x)=25012(0.054) e^{0.054 x}$ dollars/year

Example2(Similar as Textbook 3.4 hw34)

Example(Similar as Textbook 3.4 hw34) The tuition x years since 1990 at a University is modeled to be

$$
T(x)=25012 e^{0.054 x} \text { dollars }
$$

(a) Write the rate of change formula for tuition.
$T^{\prime}(x)=25012(0.054) e^{0.054 x}$ dollars/year
(b) Fill in the following table. Round numerical results in the table to three decimal places.

	1995	2000	2014	Units
x				
Tuition				
Rate of change of Tuition				

F10ti F1orz Fiotz
V1日25012年054

$$
\begin{aligned}
& \text { V } 3= \\
& \mathrm{H}_{4}= \\
& \text { V5= } \\
& \text { V6= }
\end{aligned}
$$

X	Y	Yz	X	Y1	$Y 2$
5		${ }^{17} 9$	${ }^{19}$		358.1
5		1987.	$\frac{19}{80}$		398
㫛		2096.	$\stackrel{1}{8}$		41979
碞		\%17\%	$\stackrel{4}{*}$		446.1
1		2446.3	P4		49 Fa .1
X=11			$\mathrm{x}=24$		

X	Y1	Yz	X	$Y 1$	Ye
5		1799	${ }^{19}$		378
5		18.18	$\underline{19}$		$3{ }^{5}$
㫛			81		4147
010		$\frac{215}{k 15}$	硡		4480.7
$8=11$			$\mathrm{X}=24$		

	1995	2000	2014	Units
\times	5	10	24	year
Tuition	32765	42921	91410	$\$$
Rate of change of Tuition	1769.3	2317.7	4936.1	$\$ /$ year

Example3(Similar as Problem36 in HW 3.1.)

Global Apple iPhone sales in the fiscal years 2007 to 2013 (in million units)

Worldwide: Apple
statista $=$
http://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/

\# years since 2006	1	2	3	4	5	6	7
sales in million units	1.39	11.63	20.73	39.99	72.29	125.05	150.26

(a). Let x be the years since 2006, and let $S(x)$ be the sales of iPhones in million units. Fit the best model to the data.

\# years since 2006	1	2	3	4	5	6	7
sales in million units	1.39	11.63	20.73	39.99	72.29	125.05	150.26

(a). Let x be the years since 2006, and let $S(x)$ be the sales of iPhones in million units. Fit the best model to the data.

L1	Lz	L2	z
1	1.3		
\underline{L}			
3	E0		
5	$\stackrel{7}{7}$		
5			
7			

\# years since 2006	1	2	3	4	5	6	7
sales in million units	1.39	11.63	20.73	39.99	72.29	125.05	150.26

(a). Let x be the years since 2006, and let $S(x)$ be the sales of iPhones in million units. Fit the best model to the data.

Make sure clear $[\mathrm{Y}=]$.

Make sure clear $[\mathrm{Y}=]$.

Make sure clear $[\mathrm{Y}=]$ ．

> Lnepris
> Yli三t日L1
> Ylist:Lz
> Fr"튼́ㄴ́…

$$
\begin{aligned}
& \text { EGlculgte }
\end{aligned}
$$

Make sure clear $[\mathrm{Y}=]$.

$$
\begin{aligned}
& S(x)=\frac{c}{1+a e^{-b x}} \text { million units. } \\
& a=147.506, b=0.930, c=185.912
\end{aligned}
$$

$$
\begin{aligned}
& S(x)=\frac{c}{1+a e^{-b x}} \text { million units. } \\
& a=147.506, b=0.930, c=185.912
\end{aligned}
$$

(a^{\prime}) How many iPhone will be sold in 2014?

$$
\begin{aligned}
& S(x)=\frac{c}{1+a e^{-b x}} \text { million units. } \\
& a=147.506, b=0.930, c=185.912
\end{aligned}
$$

(a^{\prime}) How many iPhone will be sold in 2014?
$S(8)=171.1$ million

$$
\begin{aligned}
& S(x)=\frac{c}{1+a e^{-b x}} \text { million units. } \\
& a=147.506, b=0.930, c=185.912
\end{aligned}
$$

(a^{\prime}) How many iPhone will be sold in 2014?
$S(8)=171.1$ million
(b). What is the rate of change of the sales model?
$S(x)=\frac{c}{1+a e^{-b x}}$ million units.
$a=147.506, b=0.930, c=185.912$
(a^{\prime}) How many iPhone will be sold in 2014?
$S(8)=171.1$ million
(b). What is the rate of change of the sales model?
$S^{\prime}(x)=-c\left(1+a e^{-b x}\right)^{-2}\left(-a b e^{-b x}\right)$ million iPhones per year
where $a=147.506, b=0.930, c=185.912$
(c). Using the model, calculate and interpret the rate of change of sales in 2014.
(c). Using the model, calculate and interpret the rate of change of sales in 2014.

（c）．Using the model，calculate and interpret the rate of change of sales in 2014.

2	$\% 1$	12
日	171.1	FFinFF
$\underline{9}$	179.77	5.527
10	183．44	226
11	184．93	．${ }^{\text {dog }}$
12	1日 5.5	26129
13	185．76	． 145
14	1日5． B 5	． 05.644

$S^{\prime}(8)=12.682$ millions units per year
（c）．Using the model，calculate and interpret the rate of change of sales in 2014.

2	$\% 1$	12
日	171.1	FFinFF
$\underline{9}$	179.77	5.527
10	183．44	226
11	184．93	．${ }^{\text {dog }}$
12	1日 5.5	26129
13	185．76	． 145
14	1日5． B 5	． 05.644

$S^{\prime}(8)=12.682$ millions units per year
From 2014 to 2015，the sale of iPhone will increase by approx 12.682 million．

Example4

The following table gives the number of chocolate bars produced at a chocolate factory per number of Oompa-Loompas employed. Show work and give units for each answer.

$x=\#$ of Oompa-Loompas	5	10	15	20	25	30	35	40	45
Number of chocolate bars	12	18	20	20	17	15	15	18	26

(a) Let x stand for the number of Oompa-Loompas employed and let $B(x)$ stand for the number of chocolate bars produced. Fit a CUBIC MODEL to the data.

Example4

The following table gives the number of chocolate bars produced at a chocolate factory per number of Oompa-Loompas employed. Show work and give units for each answer.

$x=\#$ of Oompa-Loompas	5	10	15	20	25	30	35	40	45
Number of chocolate bars	12	18	20	20	17	15	15	18	26

(a) Let x stand for the number of Oompa-Loompas employed and let $B(x)$ stand for the number of chocolate bars produced. Fit a CUBIC MODEL to the data.

$$
\begin{aligned}
& B(x)=a x^{3}+b x^{2}+c x+d \text { chocolate bars } \\
& a=0.002, b=-0.150, c=3.174, d=-0.524
\end{aligned}
$$

(b). What is the rate of change of the sales model?
$B(x)=a x^{3}+b x^{2}+c x+d$ chocolate bars
$a=0.002, b=-0.150, c=3.174, d=-0.524$
(b). What is the rate of change of the sales model?
$B^{\prime}(x)=0.006 x^{2}-0.3 x+3.174$ chocolate bars/Oompa-Loompas.
(c). Using the model, calculate and interpret the rate of change of production when 11 Oompa-Loompas are employed.
（c）．Using the model，calculate and interpret the rate of change of production when 11 Oompa－Loompas are employed．

K	$W 1$	T
日	16.311	1.1667
$\underline{9}$	17.37	． 97142
$1{ }^{1}$	1日．25	．7日兵
F1	1日．96	． 618
12	19.498	． 4598
13	19．884	． 3142
14	20.13	．1806

（c）．Using the model，calculate and interpret the rate of change of production when 11 Oompa－Loompas are employed．

\％	$Y 1$	12
日	16.311	1．1667
$\underline{\square}$	17．379	． 17142
$1{ }^{10}$	1日． 25 日	． 7 日 5
$1{ }^{1}$	1日．96	． 618
12	19．49日	． 4598
13	19．8日4	． 3140
14	20．13	．1806

$B^{\prime}(11)=0.618$ chocolate bars／Oompa－Loompas．
（c）．Using the model，calculate and interpret the rate of change of production when 11 Oompa－Loompas are employed．

\％	$Y 1$	12
日	16.311	1．1667
$\underline{\square}$	17．379	． 17142
$1{ }^{10}$	1日． 25 日	． 7 日 5
$1{ }^{1}$	1日．96	． 618
12	19．49日	． 4598
13	19．8日4	． 3140
14	20．13	．1806

$B^{\prime}(11)=0.618$ chocolate bars／Oompa－Loompas．
When the number of employed Oompa－Loompas increases from 11 to 12 ，then the production of chocolate bars increase by 0.618 ．

Example5 (Similar as HW19 in textbook 3.6.)

The profit from the supply of a certain commodity is modeled as

$$
P(q)=36 q e^{-0.3 q} \text { dollars }
$$

where q is the number of units produced.
(a). Write an expression for the rate of change of profit.

Example5 (Similar as HW19 in textbook 3.6.)

The profit from the supply of a certain commodity is modeled as

$$
P(q)=36 q e^{-0.3 q} \text { dollars }
$$

where q is the number of units produced. (a). Write an expression for the rate of change of profit.
$P^{\prime}(q)=36 e^{-0.3 q}+36 q\left(-0.3 e^{-0.3 q}\right)$ dollars per unit

Example5 (Similar as HW19 in textbook 3.6.)

The profit from the supply of a certain commodity is modeled as

$$
P(q)=36 q e^{-0.3 q} \text { dollars }
$$

where q is the number of units produced.
(a). Write an expression for the rate of change of profit.
$P^{\prime}(q)=36 e^{-0.3 q}+36 q\left(-0.3 e^{-0.3 q}\right)$ dollars per unit
(b). At what production level is the rate of change of profit zero?

Example5 (Similar as HW19 in textbook 3.6.)

The profit from the supply of a certain commodity is modeled as

$$
P(q)=36 q e^{-0.3 q} \text { dollars }
$$

where q is the number of units produced. (a). Write an expression for the rate of change of profit.
$P^{\prime}(q)=36 e^{-0.3 q}+36 q\left(-0.3 e^{-0.3 q}\right)$ dollars per unit
(b). At what production level is the rate of change of profit zero?

Solve $P^{\prime}(x)=0$ by 2ed/calc/zero. $\quad x=3.333$
zoom 0:fit,

> F1at F1otz F1otz
> V1日.
$\because 2=\square$
$\because 4=$
$\because 15=$

2ed/calc/zero

2ed／calc／zero

\square
$\square \square$

Lsit EnUFid？：

H＝25－－\quad T＝．49737593
 X＝ $2.519149 \quad 1=4.049525$


```
1
Fisht Eqund?
```


(c). What is profit at the production level found in part b ?
(c). What is profit at the production level found in part b ?

$$
\begin{aligned}
& Y(3.333) \\
& -\quad 44.1453272
\end{aligned}
$$

(c). What is profit at the production level found in part b ?

$P(3.333)=Y 1(3.333)=44.146$
(c). What is profit at the production level found in part b ?

$P(3.333)=Y 1(3.333)=44.146$

