Math1231 Lecture 12

He Wang

Northeastern University

October 5, 2015

1. Future value

1. Simple Interest

- Let P be the present value. (\$1000 for example)
- let r be the annual interest rate. (0.04 for example)
- The accumulated interest after t years is calculated as

I(t) = Prt dollars.

• The future value at time t is

$$F_s(t) = P + Prt = P(1 + rt)$$
 dollars.

2. Compound Interest

- Let P be the present value,
- let r be the annual percentage rate(APR).

The future value at time t in years of an investment (or loan) is

$$F_c(t) = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$
 dollars.

where n is the number of compoundings per year.

- Compounded annually. n = 1.
- Compounded quarterly. n = 4.
- Compounded monthly. n = 12.
- Compounded semi-annually. n = 2.
- Compounded daily. n = 365.

3. Continuously compound Interest

The future value at time t in years of an investment

$$F_e(t) = P \cdot e^{rt}$$
 dollars.

Example1(a). Write models for the future value of \$1000 at 4% APR, for simple interest, compound annually, compound monthly, compound daily, compound continuously.

• $Y1 = F_s(x) = 1000(1 + 0.04x)$ • $Y2 = 1000(1 + \frac{0.04}{1})^x$ • $Y3 = 1000(1 + \frac{0.04}{12})^{12x}$ • $Y4 = 1000(1 + \frac{0.04}{365})^{365x}$ • $Y5 = F_e(x) = 1000e^{0.04x}$

Put the above functions to the calculator. Press [Y=], Enter functions, then using [TABLE].

21011 Plot2 Plot3			X	Y1	Y2
\Y1∎1000(1+0.04)			1	1040	1040
\Y2 0 1000(1+0.04≯				1080 1120	1081.6 1124.9
NY3 B 1000(1+0.04≯				1160	1169.9
\Y481000(1+0.04.)			4567	1200 1240 1280	1216.7 1265.3 1315.9
\Ys∎1000e ^(0.04%)		Y1=1040			
X	Y2	Y3	X	Y4	Y5
1234	500400 1081.6	1040.7 1083.1	1	1040.8 1083.3	10408 1083.3
NJ 1507	1124.9 1169.9 1216.7 1265.3 1315.9	1127.3 1173.2 1221 1270.7 1322.5	12195-10197-	1127.5 1173.5 1221.4 12271.2 1323.1	1127.5 1173.5 1221.4 1271.2 1323.1

Year	$Value(F_s)$	F_c (n=1)	$F_c(n=12)$	$F_c(n=365)$	$Value(F_e)$
0	\$1000	\$1000	\$1000	\$1000	\$1000
1	\$1040	\$1040	\$1040.7	\$1040.80	\$1040.81
2	\$1080	\$1081.6	\$1083.1	\$1083.28	\$1083.29
3	\$1120	\$1124.9	\$1127.3	\$1127.49	\$1127.50
4	\$1160	\$1169.9	\$1173.2	\$1173.50	\$1173.51
5	\$1200	\$1216.7	\$1121.0	\$1221.39	\$1121.40

Example (b).

Write the rate of change equation for Each future value.

•
$$Y1=F_s(x) = 1000(1+0.04x)$$

• $F'_s(x) = 1000(0.04) = 40$
• $Y2=1000(1+\frac{0.04}{1})^x$
• $(Y2)' = 1000(1+\frac{0.04}{1})^x \ln(1.04)$
• $Y3=1000(1+\frac{0.04}{12})^{12x}$
• $(Y3)' = 1000(1+\frac{0.04}{12})^{12x} \ln(1+\frac{0.04}{12})12$
• $Y4=1000(1+\frac{0.04}{365})^{365x}$
• $(Y4)' = 1000(1+\frac{0.04}{365})^{365x} \ln(1+\frac{0.04}{365})365$
• $Y5=F_e(x) = 1000e^{0.04x}$
• $F'_e(x) = 40e^{0.04x}$

Example1 (c). How quickly(rapidly) is the investment $F_e(x)$ growing after 5 years.

Method1: Put $F'_e(x) = 40e^{0.04x}$ in the Calculator Y6. Then calculate Y6(5)=48.856 \$ per year. Method2: Go back to home screen. Using [MATH], 8:[nDeriv(]

$$\left. \frac{d}{dX}(Y5) \right|_{X=5} = 48.856 \ \ \text{per year.}$$

$$\frac{3031}{\sqrt{3}} = 1000(1+0.04) \times \frac{\sqrt{6}(5)}{\sqrt{3}} \times \frac{\sqrt{6}(5)}{\sqrt{3}} \times \frac{\sqrt{6}(1+0.04)}{\sqrt{3}} \times \frac{\sqrt{6}(75)}{\sqrt{3}} \times \frac{\sqrt{6}(75)}{\sqrt{3}} \times \frac{\sqrt{6}(75)}{\sqrt{3}} \times \frac{\sqrt{6}}{\sqrt{3}} \times \frac{\sqrt{6}(75)}{\sqrt{6}} \times \frac{\sqrt{6}(75)}{\sqrt{6$$

Example1 (d). How **quickly(rapidly)** is the investment Y3 growing after 5 years.

Using [MATH], 8:[nDeriv(]

$$\left. \frac{d}{dX}(Y3) \right|_{X=5} = 48.759 \ \ \text{per year}.$$

40.0001100	С,
$\frac{d}{dX}(Y_5) _{X=5}$	
	_
48.856110	S,
$\frac{d}{dX}(Y_3) _{X=5}$	
48.7586444	D

Example. The number of phones in a country for the years 1990 through 2020 can be modeled by

$$N(x) = 1.1x^3 + 0.3x^2 + 0.2x + 5.11$$
 million phones,

where x is the number of years after 1990.

(a). Write out the rate-of-change formula for the number of phones in the country.

 $N'(x) = 3.3x^2 + 0.6x + 0.2$ million phone per year

(b). Fill in the following table.

	1991	2000	2010	Units
x				
number of phones				
Rate of change of $N(x)$				

Example. The number of phones in a country for the years 1990 through 2020 can be modeled by

$$N(x) = 1.1x^3 + 0.3x^2 + 0.2x + 5.11$$
 million phones,

where x is the number of years after 1990.

(a). Write out the rate-of-change formula for the number of phones in the country.

 $N'(x) = 3.3x^2 + 0.6x + 0.2$ million phone per year

(b). Fill in the following table.

	1991	2000	2010	Units
x	1	10	20	year
number of phones				
Rate of change of $N(x)$				

Enter N(x) to Y1, Enter N'(x) to Y2. Check the [TABLE]

	1991	2000	2010	Units
x	1	10	20	year
number of phones	6.71	1137.11	8929.11	million
Rate of change of $N(x)$	4.1	336.2	1332.2	million per year

Another method find the rate of change using [nDeriv(] Enter $\frac{d}{dX}$ to Y3 X = XY1(1) Y2(1) Y3(1 6.71 1137.11 4.1000011 4.1 Y2(10) Y2(20) Y3(10) 336.2000011 Y3(20) 1332.200001 Y1(10) 336.2[|] Y1(20) 8929.11 1332.2