Math1231 Lecture 12

He Wang
Northeastern University

October 5, 2015

1. Future value

1. Simple Interest

- Let P be the present value. ($\$ 1000$ for example)
- let r be the annual interest rate. (0.04 for example)
- The accumulated interest after t years is calculated as

$$
I(t)=\operatorname{Prt} \text { dollars }
$$

- The future value at time t is

$$
F_{s}(t)=P+P r t=P(1+r t) \text { dollars }
$$

2. Compound Interest

- Let P be the present value,
- let r be the annual percentage rate(APR).

The future value at time t in years of an investment (or loan) is

$$
F_{c}(t)=P \cdot\left(1+\frac{r}{n}\right)^{n t} \text { dollars }
$$

where n is the number of compoundings per year.

- Compounded annually. $n=1$.
- Compounded quarterly. $n=4$.
- Compounded monthly. $n=12$.
- Compounded semi-annually. $n=2$.
- Compounded daily. $n=365$.

3. Continuously compound Interest

The future value at time t in years of an investment

$$
F_{e}(t)=P \cdot e^{r t} \text { dollars. }
$$

Example1(a). Write models for the future value of $\$ 1000$ at 4\% APR, for simple interest, compound annually, compound monthly, compound daily, compound continuously.

- $\mathrm{Y} 1=F_{s}(x)=1000(1+0.04 x)$
- $Y 2=1000\left(1+\frac{0.04}{1}\right)^{x}$
- $Y 3=1000\left(1+\frac{0.04}{12}\right)^{12 x}$
- $Y 4=1000\left(1+\frac{0.04}{365}\right)^{365 x}$
- $\mathrm{Y} 5=F_{e}(x)=1000 e^{0.04 x}$

Put the above functions to the calculator. Press $[\mathrm{Y}=$], Enter functions, then using [TABLE].

	10 t F1		X	Y1	Y
	,			7640	
Ye	9610 1	9. 04 !		${ }^{10} 180$	${ }^{10} 1081.6$
Ys	91091	6. 04.	4	\%	11.
$\times 4$	9610	. 04.1	5	124	12
			7	1280	1.9
			$\mathrm{V}_{1}=$		
X	Yz	Y3	X	Y 4	Y5
					7640,
$\stackrel{8}{4}$	${ }_{1}^{10} 124.6$	${ }_{1}^{10} 108.1$,		${ }_{1}^{10} 8$
4	11.69	178	4	175	$11+5$
5	1816	12	5	12	${ }_{1}^{12} 1.4$
$\frac{5}{7}$	${ }_{1315} 18$	${ }_{1}^{128.5}$	$\frac{5}{7}$	${ }_{1}^{183.1}$	${ }_{1}^{12712}$
$2=$			5	,	7741

Summarize the table data above: (future value of $\$ 1000$ at 4% APR)

Year	Value $\left(F_{s}\right)$	$F_{c}(\mathrm{n}=1)$	$F_{c}(n=12)$	$F_{c}(n=365)$	Value $\left(F_{e}\right)$
0	$\$ 1000$	$\$ 1000$	$\$ 1000$	$\$ 1000$	$\$ 1000$
1	$\$ 1040$	$\$ 1040$	$\$ 1040.7$	$\$ 1040.80$	$\$ 1040.81$
2	$\$ 1080$	$\$ 1081.6$	$\$ 1083.1$	$\$ 1083.28$	$\$ 1083.29$
3	$\$ 1120$	$\$ 1124.9$	$\$ 1127.3$	$\$ 1127.49$	$\$ 1127.50$
4	$\$ 1160$	$\$ 1169.9$	$\$ 1173.2$	$\$ 1173.50$	$\$ 1173.51$
5	$\$ 1200$	$\$ 1216.7$	$\$ 1121.0$	$\$ 1221.39$	$\$ 1121.40$

Example (b).

Write the rate of change equation for Each future value.

- $\mathrm{Y} 1=F_{s}(x)=1000(1+0.04 x) \quad \bullet F_{s}^{\prime}(x)=1000(0.04)=40$
- $Y 2=1000\left(1+\frac{0.04}{1}\right)^{x}$
- $(Y 2)^{\prime}=1000\left(1+\frac{0.04}{1}\right)^{x} \ln (1.04)$
- $Y 3=1000\left(1+\frac{0.04}{12}\right)^{12 x}$
- $(Y 3)^{\prime}=1000\left(1+\frac{0.04}{12}\right)^{12 x} \ln \left(1+\frac{0.04}{12}\right) 12$
- $Y 4=1000\left(1+\frac{0.04}{365}\right)^{365 x}$
- $(Y 4)^{\prime}=1000\left(1+\frac{0.04}{365}\right)^{365 x} \ln \left(1+\frac{0.04}{365}\right) 365$
- $\mathrm{Y} 5=F_{e}(x)=1000 e^{0.04 x}$
- $F_{e}^{\prime}(x)=40 e^{0.04 x}$

Example1（c）．How quickly（rapidly）is the investment $F_{e}(x)$ growing after 5 years．
Method1：Put $F_{e}^{\prime}(x)=40 e^{0.04 x}$ in the Calculator Y6．Then calculate $\mathrm{Y} 6(5)=48.856$ \＄per year．
Method2：Go back to home screen．Using［MATH］，8：［nDeriv（］

$$
\left.\frac{d}{d X}(Y 5)\right|_{X=5}=48.856 \$ \text { per year. }
$$

Flotr Fiotz Fiots
 V3日1060（1＋0．04．

 Y5月1日Ge
 ソ6 4010 （0．04\％）

$$
\begin{gathered}
Y 6(5) \\
48.85611033 \\
\left.\frac{d}{d X}(Y 5)\right|_{4=5} \\
48.8561103
\end{gathered}
$$

Example1 (d). How quickly(rapidly) is the investment $Y 3$ growing after 5 years.
Using [MATH], 8:[nDeriv(]

$$
\left.\frac{d}{d X}(Y 3)\right|_{X=5}=48.759 \$ \text { per year. }
$$

```
40.6 .011 ENO
\(\left.\frac{d}{d X}(Y 5)\right|_{4=5}\) 48.856110 .3
\(\left.\frac{d}{d X}(Y z)\right|_{x=5}\)
48.75864445
```

Example. The number of phones in a country for the years 1990 through 2020 can be modeled by

$$
N(x)=1.1 x^{3}+0.3 x^{2}+0.2 x+5.11 \quad \text { million phones, }
$$

where x is the number of years after 1990 .
(a). Write out the rate-of-change formula for the number of phones in the country.

$$
N^{\prime}(x)=3.3 x^{2}+0.6 x+0.2 \quad \text { million phone per year }
$$

(b). Fill in the following table.

	1991	2000	2010	Units
\times				
number of phones				
Rate of change of $N(x)$				

Example. The number of phones in a country for the years 1990 through 2020 can be modeled by

$$
N(x)=1.1 x^{3}+0.3 x^{2}+0.2 x+5.11 \quad \text { million phones, }
$$

where x is the number of years after 1990 .
(a). Write out the rate-of-change formula for the number of phones in the country.

$$
N^{\prime}(x)=3.3 x^{2}+0.6 x+0.2 \quad \text { million phone per year }
$$

(b). Fill in the following table.

	1991	2000	2010	Units
\times	1	10	20	year
number of phones				
Rate of change of $N(x)$				

Enter $N(x)$ to Y1, Enter $N^{\prime}(x)$ to Y2. Check the [TABLE]

	1991	2000	2010	Units
x	1	10	20	year
number of phones	6.71	1137.11	8929.11	million
Rate of change of $N(x)$	4.1	336.2	1332.2	million per year

Another method find the rate of change using [nDeriv(] Enter $\left.\frac{d}{d X}(Y 1)\right|_{X=X}$ to $Y 3$

Y(1)		V2(1)		V3(1)
	6.71		4.1	4.1000611
Y(10)	1137.11	$Y 2(10)$	336.2	Y (10) 336. 2060 111
$\mathrm{Y}_{1}(20)$	8929.11	$Y 2(20)$	1332.2	$\begin{array}{r} Y<(20) \\ 1332.200001 \end{array}$

