Formality properties: generalizations and applications

He Wang (joint work with Alex Suciu)

University of Nevada, Reno

AMS 2017 Fall Western Sectional Meeting: Special Session on Homotopy Theory University of California, Riverside

November 5, 2017

Rational homotopy theory

• Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]

Rational homotopy theory

- Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]
- Two spaces X and Y have the same rational homotopy type if there is a continuous map f: X → Y inducing an isomorphism

$$\pi_*(f)\otimes \mathbb{Q}\colon \pi_*(X)\otimes \mathbb{Q} \to \pi_*(Y)\otimes \mathbb{Q}.$$

Rational homotopy theory

- Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]
- Two spaces X and Y have the same rational homotopy type if there is a continuous map f: X → Y inducing an isomorphism

$$\pi_*(f)\otimes \mathbb{Q}\colon \pi_*(X)\otimes \mathbb{Q} \to \pi_*(Y)\otimes \mathbb{Q}.$$

• For a "formal" simply connected space, its rational homotopy type is determined by its cohomology algebra over Q.

 Let A = (A*, d_A) be a graded-commutative differential graded algebra (CDGA) over Q.

- Let $A = (A^*, d_A)$ be a graded-commutative differential graded algebra (CDGA) over \mathbb{Q} .
- A CDGA morphism $f: A \rightarrow B$ is a *quasi-isomorphism* if

$$f^* \colon H^*(A) \to H^*(B)$$

is an isomorphism.

- Let A = (A*, d_A) be a graded-commutative differential graded algebra (CDGA) over Q.
- A CDGA morphism $f: A \rightarrow B$ is a *quasi-isomorphism* if

$$f^* \colon H^*(A) \to H^*(B)$$

is an isomorphism.

• Each connected CDGA (A, d_A) has a minimal model $(\mathcal{M}(A), d)$, unique up to isomorphism. [Sullivan 77]

- Let A = (A*, d_A) be a graded-commutative differential graded algebra (CDGA) over Q.
- A CDGA morphism $f: A \rightarrow B$ is a *quasi-isomorphism* if

$$f^* \colon H^*(A) \to H^*(B)$$

is an isomorphism.

- Each connected CDGA (A, d_A) has a minimal model $(\mathcal{M}(A), d)$, unique up to isomorphism. [Sullivan 77]
- A is said to be *formal* if there exists a quasi-isomorphism

$$(\mathcal{M}(A), d) \rightarrow (H^*(A), 0),$$

- Let A = (A*, d_A) be a graded-commutative differential graded algebra (CDGA) over Q.
- A CDGA morphism $f: A \rightarrow B$ is a *quasi-isomorphism* if

$$f^* \colon H^*(A) \to H^*(B)$$

is an isomorphism.

- Each connected CDGA (A, d_A) has a minimal model $(\mathcal{M}(A), d)$, unique up to isomorphism. [Sullivan 77]
- A is said to be *formal* if there exists a quasi-isomorphism

$$(\mathcal{M}(A), d) \rightarrow (H^*(A), 0),$$

equivalently, there is a sequence of zig-zag quasi-isomorphisms

$$(A, d_A) \leftarrow \bullet \rightarrow \bullet \leftarrow \cdots \rightarrow (H^*(A), 0).$$

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

$$A_{PL}(X) \xleftarrow{\text{quasi-iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0)$$

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

$$A_{PL}(X) \xleftarrow{\text{quasi-iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0)$$

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

Compact Kähler manifolds are formal over \mathbb{R} .

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

$$A_{PL}(X) \xleftarrow{\text{quasi-iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0)$$

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

Compact Kähler manifolds are formal over \mathbb{R} .

Theorem (Sullivan 77, Neisendorfer-Miller 78, Halperin-Stasheff 79)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers. X is formal over \mathbb{Q} if and only if X is formal over \mathbb{K} .

• $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \xrightarrow{} A_{PL}(X) \xrightarrow{} \mathcal{M}(X)$$

• X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

$$A_{PL}(X) \xleftarrow{\text{quasi-iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0)$$

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

Compact Kähler manifolds are formal over \mathbb{R} .

Theorem (Sullivan 77, Neisendorfer-Miller 78, Halperin-Stasheff 79)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers. X is formal over \mathbb{Q} if and only if X is formal over \mathbb{K} .

Corollary [Sullivan 77] Compact Kähler manifolds are formal over $\mathbb{Q}.$

He Wang (UNR)

Remark

Remark

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).

Remark

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_{∞} -algebra; A_{∞} -algebra; L_{∞} -algebra.

Remark

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_{∞} -algebra; A_{∞} -algebra; L_{∞} -algebra.
- Differential graded operad.

Remark

We can talk about "formality property" about an algebraic object A with a differential $d: A \rightarrow A$:

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_{∞} -algebra; A_{∞} -algebra; L_{∞} -algebra.
- Differential graded operad.

Theorem (Santos-Navarro-Pascual-Roig 05)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and P be a dg operad over \mathbb{Q} with homology of finite type. P is formal if and only if $P \otimes \mathbb{K}$ is formal.

• A CDGA morphism $f: A \rightarrow B$ is an *i-quasi-isomorphism* if

 $f^* \colon H^j(A) \to H^j(B)$

is an isomorphism for each $j \leq i$ and monomorphism for j = i + 1.

• A CDGA morphism $f: A \rightarrow B$ is an *i-quasi-isomorphism* if

 $f^* \colon H^j(A) \to H^j(B)$

is an isomorphism for each $j \leq i$ and monomorphism for j = i + 1.

• Each connected CDGA A has an *i*-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]

• A CDGA morphism $f: A \rightarrow B$ is an *i-quasi-isomorphism* if

 $f^* \colon H^j(A) \to H^j(B)$

is an isomorphism for each $j \leq i$ and monomorphism for j = i + 1.

- Each connected CDGA A has an *i*-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]
- A is said to be *i-formal* if there exists an *i*-quasi-isomorphism

 $\mathcal{M}(A,i) \rightarrow (H^*(A),0).$

• A CDGA morphism $f: A \rightarrow B$ is an *i-quasi-isomorphism* if

 $f^* \colon H^j(A) \to H^j(B)$

is an isomorphism for each $j \leq i$ and monomorphism for j = i + 1.

- Each connected CDGA A has an *i*-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]
- A is said to be *i-formal* if there exists an *i*-quasi-isomorphism

$$\mathcal{M}(A,i) \rightarrow (H^*(A),0).$$

• A space X is said to be *i-formal*, if $A_{PL}(X)$ is *i*-formal.

• A CDGA morphism $f: A \rightarrow B$ is an *i-quasi-isomorphism* if

 $f^* \colon H^j(A) \to H^j(B)$

is an isomorphism for each $j \leq i$ and monomorphism for j = i + 1.

- Each connected CDGA A has an *i*-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]
- A is said to be *i-formal* if there exists an *i*-quasi-isomorphism

$$\mathcal{M}(A,i) \rightarrow (H^*(A),0).$$

• A space X is said to be *i-formal*, if $A_{PL}(X)$ is *i*-formal.

Theorem (Suciu–W.)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers $b_1(X), \ldots, b_{i+1}(X)$. Then X is i-formal over \mathbb{Q} if and only if X is i-formal over \mathbb{K} .

He Wang (UNR)

• The 1-formality of a path-connected space X depends only on $\pi_1(X)$.

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

• Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties,...

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties,...
- Heisenberg (type) group \mathcal{H}_n is (n-1)-formal but not *n*-formal.

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if X = K(G, 1) is 1-formal,
 - i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties,...
- Heisenberg (type) group \mathcal{H}_n is (n-1)-formal but not *n*-formal.

An obstruction to formality is provided by non-vanishing higher Massey products.

Graded Lie algebras

Let G be a finitely generated group.

• The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
Let G be a finitely generated group.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
- The *associated graded Lie algebra* of G is defined to be

$$\operatorname{\mathsf{gr}}(G;\mathbb{Q}):= igoplus_{k\geq 1}(\Gamma_k(G)/\Gamma_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{Q}.$$

Let G be a finitely generated group.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
- The *associated graded Lie algebra* of G is defined to be

$$\operatorname{\mathsf{gr}}(G;\mathbb{Q}):=\bigoplus_{k\geq 1}(\Gamma_k(G)/\Gamma_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{Q}.$$

• The *holonomy Lie algebra* of a finitely generated group *G* is defined to be

$$\mathfrak{h}(G;\mathbb{Q}) := \mathrm{Lie}(H_1(G;\mathbb{Q}))/\langle \mathrm{im}(\partial_G) \rangle.$$

Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \xrightarrow{\cup} H^2(G; \mathbb{Q})$.

Let G be a finitely generated group.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
- The *associated graded Lie algebra* of G is defined to be

$$\operatorname{\mathsf{gr}}(G;\mathbb{Q}):=\bigoplus_{k\geq 1}(\operatorname{\Gamma}_k(G)/\operatorname{\Gamma}_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{Q}.$$

• The *holonomy Lie algebra* of a finitely generated group *G* is defined to be

$$\mathfrak{h}(G;\mathbb{Q}) := \mathrm{Lie}(H_1(G;\mathbb{Q}))/\langle \mathrm{im}(\partial_G) \rangle.$$

Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \xrightarrow{\cup} H^2(G; \mathbb{Q})$.

• There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \mathfrak{gr}(G; \mathbb{Q})$. [Lambe 86]

Let G be a finitely generated group.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
- The associated graded Lie algebra of G is defined to be

$$\operatorname{\mathsf{gr}}(G;\mathbb{Q}):=\bigoplus_{k\geq 1}(\Gamma_k(G)/\Gamma_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{Q}.$$

• The *holonomy Lie algebra* of a finitely generated group *G* is defined to be

$$\mathfrak{h}(G;\mathbb{Q}):=\mathrm{Lie}(H_1(G;\mathbb{Q}))/\langle\mathrm{im}(\partial_G)\rangle.$$

Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \xrightarrow{\cup} H^2(G; \mathbb{Q})$.

- There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow gr(G; \mathbb{Q})$. [Lambe 86]
- We say that a group G is graded-formal, if Φ_G: h(G; Q) → gr(G; Q) is an isomorphism of graded Lie algebras.

Let G be a finitely generated group.

• There exists a tower of nilpotent Lie algebras [Malcev 51]

 $\mathfrak{L}((G/\Gamma_2 G)\otimes \mathbb{Q}) \leftrightsquigarrow \mathfrak{L}((G/\Gamma_3 G)\otimes \mathbb{Q}) \twoheadleftarrow \mathfrak{L}((G/\Gamma_4 G)\otimes \mathbb{Q}) \twoheadleftarrow$

Let G be a finitely generated group.

• There exists a tower of nilpotent Lie algebras [Malcev 51]

$$\mathfrak{L}((G/\Gamma_2 G)\otimes \mathbb{Q}) \twoheadleftarrow \mathfrak{L}((G/\Gamma_3 G)\otimes \mathbb{Q}) \twoheadleftarrow \mathfrak{L}((G/\Gamma_4 G)\otimes \mathbb{Q}) \twoheadleftarrow$$

The inverse limit of the tower is called the *Malcev Lie algebra* of *G*, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

Let G be a finitely generated group.

• There exists a tower of nilpotent Lie algebras [Malcev 51]

$$\mathfrak{L}((G/\Gamma_2 G)\otimes \mathbb{Q}) \leftrightsquigarrow \mathfrak{L}((G/\Gamma_3 G)\otimes \mathbb{Q}) \twoheadleftarrow \mathfrak{L}((G/\Gamma_4 G)\otimes \mathbb{Q}) \twoheadleftarrow$$

The inverse limit of the tower is called the *Malcev Lie algebra* of *G*, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

The universal enveloping algebra of m(G; Q) is isomorphic to QG.
 [Quillen 69]

Let G be a finitely generated group.

• There exists a tower of nilpotent Lie algebras [Malcev 51]

$$\mathfrak{L}((G/\Gamma_2 G)\otimes \mathbb{Q}) \leftrightsquigarrow \mathfrak{L}((G/\Gamma_3 G)\otimes \mathbb{Q}) \lll \mathfrak{L}((G/\Gamma_4 G)\otimes \mathbb{Q}) \lll$$

The inverse limit of the tower is called the *Malcev Lie algebra* of *G*, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

- The universal enveloping algebra of m(G; Q) is isomorphic to QG.
 [Quillen 69]
- Let M(G, 1) be the 1-minimal model of K(G, 1). These is a one to one corresponding between M(G, 1) and the Malcev Lie algebra m(G; Q). [Sullivan 77, Cenkl–Porter 81]

• $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q})).$ [Quillen 68]

- $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q}))$. [Quillen 68]
- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]

- $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q})).$ [Quillen 68]
- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]
- We say that a group G is *filtered-formal*, if there is a filtered Lie algebra isomorphism $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{gr}(G; \mathbb{Q})$.

• $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q})).$ [Quillen 68]

- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]
- We say that a group G is *filtered-formal*, if there is a filtered Lie algebra isomorphism $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{gr}(G; \mathbb{Q})$.

- $\operatorname{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \operatorname{gr}(\mathfrak{m}(G; \mathbb{Q})).$ [Quillen 68]
- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]
- We say that a group G is *filtered-formal*, if there is a filtered Lie algebra isomorphism $\mathfrak{m}(G; \mathbb{Q}) \cong \widehat{gr}(G; \mathbb{Q})$.

• formal
$$\implies$$
 i-formal \implies 1-formal \iff $+$ filtered-formal.

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

Remark

• The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the "Taylor expansion" of G, which is a map $E: G \to \widehat{gr}(\mathbb{Q}G)$ satisfing some properties.

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the "Taylor expansion" of G, which is a map $E: G \to \widehat{gr}(\mathbb{Q}G)$ satisfing some properties.
- G has a Taylor expansion ⇔ G is filtered-formal.
 G has a quadratic Taylor expansion ⇔ G is 1-formal.

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K} .

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the "Taylor expansion" of G, which is a map $E: G \to \widehat{gr}(\mathbb{Q}G)$ satisfing some properties.
- G has a Taylor expansion ↔ G is filtered-formal.
 G has a quadratic Taylor expansion ↔ G is 1-formal.
- A map $T: F_n \to \mathbb{Q}\langle\!\langle z_1, \cdots, z_n \rangle\!\rangle$ defined by $T(x_i) = \exp(z_i)$ is a Taylor expansion of F_n .

Proposition (Suciu–W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota: K \to G$. Then:

Proposition (Suciu-W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota: K \to G$. Then:

- **1** If G is graded-formal, then K is also graded-formal.
- 2 If G is filtered-formal, then K is also filtered-formal.
- If G is 1-formal, then K is also 1-formal.

Proposition (Suciu-W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota: K \to G$. Then:

- **1** If G is graded-formal, then K is also graded-formal.
- **2** If G is filtered-formal, then K is also filtered-formal.
- If G is 1-formal, then K is also 1-formal.

Proposition (Suciu-W.)

Let G_1 and G_2 be two finitely generated groups. The following conditions are equivalent.

- **(** *G*₁ and *G*₂ are graded-formal (respectively, filtered-formal, or 1-formal).
- **2** $G_1 * G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).

③ $G_1 \times G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).

• Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each a ∈ A¹, define a cochain complex of finite-dimensional C-vector spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each a ∈ A¹, define a cochain complex of finite-dimensional C-vector spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

• The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}^i_k(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A^*; a) \ge k \}.$$

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each a ∈ A¹, define a cochain complex of finite-dimensional C-vector spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

• The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_k^i(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A^*; a) \ge k \}.$$

Theorem (Dimca–Papadima–Suciu 09)

If G is 1-formal, $\mathcal{R}^1_k(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.

• The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).

- The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).
- The *pure virtual braid groups* of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \le i \ne j \le n$, subject to the relations

$x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij},$	for i, j, k distinct,
$[x_{ij}, x_{st}] = 1,$	for i, j, s, t distinct.

- The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).
- The *pure virtual braid groups* of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \le i \ne j \le n$, subject to the relations

$$\begin{aligned} x_{ij} x_{ik} x_{jk} &= x_{jk} x_{ik} x_{ij}, & \text{for } i, j, k \text{ distinct}, \\ [x_{ij}, x_{st}] &= 1, & \text{for } i, j, s, t \text{ distinct}. \end{aligned}$$

 vP_n has a subgroup generated by x_{ij} for i < j, denoted by vP_n^+ .

- The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).
- The *pure virtual braid groups* of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \le i \ne j \le n$, subject to the relations

$$\begin{aligned} x_{ij} x_{ik} x_{jk} &= x_{jk} x_{ik} x_{ij}, & \text{for } i, j, k \text{ distinct}, \\ [x_{ij}, x_{st}] &= 1, & \text{for } i, j, s, t \text{ distinct}. \end{aligned}$$

vP_n has a subgroup generated by x_{ij} for i < j, denoted by vP_n⁺.
Bartholdi, Enriquez, Etingof, and Rains (06) independently studied vP_n and vP_n⁺ as groups arising from the Yang-Baxter equations.

- The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).
- The *pure virtual braid groups* of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \le i \ne j \le n$, subject to the relations

$$\begin{aligned} x_{ij} x_{ik} x_{jk} &= x_{jk} x_{ik} x_{ij}, & \text{for } i, j, k \text{ distinct}, \\ [x_{ij}, x_{st}] &= 1, & \text{for } i, j, s, t \text{ distinct}. \end{aligned}$$

vP_n has a subgroup generated by x_{ij} for i < j, denoted by vP_n⁺.
Bartholdi, Enriquez, Etingof, and Rains (06) independently studied

- vP_n and vP_n^+ as groups arising from the Yang-Baxter equations.
- They also showed that vP_n and vP_n^+ are graded-formal (with the work of P. Lee (13)) and computed the cohomology algebras of these groups.

(Non-)formality of pure virtual braid groups

Theorem (Suciu-W.)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

(Non-)formality of pure virtual braid groups

Theorem (Suciu-W.)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms

Lemma

The group vP_3 is 1-formal.

Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N * \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.
Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N * \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N * \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Proof: The first resonance variety $\mathcal{R}_1(vP_4^+,\mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

$$\begin{aligned} x_{12}x_{24}(x_{13}+x_{23})+x_{13}x_{34}(x_{12}-x_{23})-x_{24}x_{34}(x_{12}+x_{13})&=0,\\ x_{12}x_{23}(x_{14}+x_{24})+x_{12}x_{34}(x_{23}-x_{14})+x_{14}x_{34}(x_{23}+x_{24})&=0,\\ x_{13}x_{23}(x_{14}+x_{24})+x_{14}x_{24}(x_{13}+x_{23})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0,\\ x_{12}(x_{13}x_{14}-x_{23}x_{24})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0.\end{aligned}$$

Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N * \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Proof: The first resonance variety $\mathcal{R}_1(vP_4^+,\mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

$$\begin{aligned} x_{12}x_{24}(x_{13}+x_{23})+x_{13}x_{34}(x_{12}-x_{23})-x_{24}x_{34}(x_{12}+x_{13})&=0,\\ x_{12}x_{23}(x_{14}+x_{24})+x_{12}x_{34}(x_{23}-x_{14})+x_{14}x_{34}(x_{23}+x_{24})&=0,\\ x_{13}x_{23}(x_{14}+x_{24})+x_{14}x_{24}(x_{13}+x_{23})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0,\\ x_{12}(x_{13}x_{14}-x_{23}x_{24})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0.\end{aligned}$$

 \Rightarrow The group vP_4^+ is not 1-formal.

References

Alexander I. Suciu and He Wang,

Formality properties of finitely generated groups and Lie algebras, arXiv:1504.08294v3.

Alexander I. Suciu and He Wang,

Pure virtual braids, resonance, and formality, Math. Z. 286 (2017), no. 3-4, 1495-1524. arXiv:1602.04273.

Alexander I. Suciu and He Wang,

Cup products, lower central series, and holonomy Lie algebras, arXiv:1701.07768.

Thank You!