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Graded Lie algebras

G : a finitely generated group.

k : a field of characteristic 0.

The lower central series of G : Γ1G = G , Γk+1G = [ΓkG ,G ], k ≥ 1.

The associated graded Lie algebra of a group G is defined by

gr(G ;k) :=
⊕
k≥1

(ΓkG/Γk+1G )⊗Z k. (1)

The holonomy Lie algebra of a group G is defined to be

h(G ; k) := Lie(H1(G ;k))/〈im(∂G )〉. (2)

Here, ∂G is the dual of H1(G ; k) ∧ H1(G ;k)
∪−→ H2(G ;k).

There exists an epimorphism ΦG : h(G ; k) � gr(G ; k). [Lambe 86]
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Magnus expansion

Suppose G has a finite presentation 〈x1, . . . , xn | r1, . . . , rm〉.
The Magnus expansion M : kF → k〈〈x1, . . . , xn〉〉, is a ring homomor-
phism defined by M(xi ) = 1 + xi and M(x−1i ) = 1− xi + x2i − x3i + · · · .

Theorem (Fenn-Sjerve 87, Matei-Suciu 98 )

Suppose G is a commutator-relators group, such that H2(G ) is free
abelian. The cup-product ∪ : H1(G ) ∧ H1(G )→ H2(G ) is given by

ui ∪ uj =
m∑

k=1

M(rk)i ,jβk .

Proposition (Papadima-Suciu 04)

If G is a commutator-relators group, then

h(G ;k) = Lie(x1, . . . , xn)/〈M2(r1), . . . ,M2(rm)〉.
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Generalization

The Magnus expansions of a group G is the composition

κ : kF M−−→ k〈〈x1, . . . , xn〉〉
π̂−−→ k〈〈y1, . . . , yb〉〉,

where b = dimH1(G ;k) and π̂ is induced by π : H1(F ;k)→ H1(G ;k).

In particular, if G is a commutator-relators group, then π̂ is identity.

A group G has an echelon presentation 〈x1, . . . , xn | w1, . . . ,wm〉, if
the augmented Jocobian matrix of Fox derivative (M(wk)i ) is in row-
echelon form.

κ2(r): the degree 2 homogeneous part of κ(r).

κ(r)i ,j : the coefficient of yiyj in κ(r).
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Theorem (Suciu-W. 15)

Let G be a group with a presentation 〈x1, . . . , xn | r1, . . . , rm〉.
Let KG be the 2-complex associated to the presentation.

1 There exists a group G̃ with echelon presentation 〈x1, . . . , xn |
w1, . . . ,wm〉 such that

h(G ; k) ∼= h(G̃ ; k) and H≤2(KG ; k) ∼= H≤2(K
G̃

; k).

2 The cup-product map ∪ : H1(KG ;k)∧H1(KG ; k)→ H2(KG ; k) is given
by

ui ∪ uj =
m∑

k=n−b+1

κ(wk)i ,jβk .

3 There exists an isomorphism of graded Lie algebras

h(G ; k)
∼=−−→ Lie(y1, . . . , yb)/ideal(κ2(wn−b+1), . . . , κ2(wm)) .
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Malcev Lie algebra

The tower of nilpotent Lie groups

· · · // (G/Γ4G )⊗ k // (G/Γ3G )⊗ k // (G/Γ2G )⊗ k

is an inverse limit system. The pronilpotent Lie algebra defined by

m(G ;k) = lim←−
k

(L((G/ΓkG )⊗ k)), (3)

is called the Malcev Lie algebra of G (over k).

A := kG with a natural Hopf algebra structure.

p(G ; k) := { all primitive elements of Â }.

Theorem (Quillen)

1 There is a filtered Lie algebra isomorphism p(G ;k)→ m(G ; k).

2 There is a graded Lie algebra isomorphism gr(G ;k)→ gr(m(G ;k)).
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Formality

A group G is 1-formal, if there exists a cdga homomorphismM(G )→
H∗(G ;Q), inducing an isomorphism in cohomology of degree 1 and a
monomorphism in degree 2.

A group G is 1-formal iff m(G ; k) ∼= ĥ(G ;k). [Sullivan 77]

A group G is graded-formal, if ΦG : h(G ; k) � gr(G ;k) is an isomor-
phism of graded Lie algebras.

A group G is filtered-formal, if there is a filtered Lie algebra isomor-
phism m(G ; k) ∼= ĝr(G ;k), which induces the identity on associated
graded Lie algebras.

• 1-formal ⇐⇒ graded-formal + filtered-formal.

m(G ;k)

filtered−formal ((

1−formal // ĥ(G ; k)

graded−formalvvvv
ĝr(m(G )) ∼= ĝr(G ; k)

See my poster tomorrow for more properties!
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The resonance varieties

G : finitely generated group.

Suppose A := H∗(G ,C) has finite dimension in each degree.

For each a ∈ A1, we have a2 = 0.

Define a cochain complex of finite-dimensional C-vector spaces,

(A, a) : A0 a∪−−−→ A1 a∪−−−→ A2 a∪−−−→ · · · ,

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A1

Ri
d(G ,C) = {a ∈ A1 | dimCH

i (A; a) ≥ d},

defined for all integers i ≥ 1 and d ≥ 1.

R1
1(Zn,C) = {0}; R1

1(π1(Σg ),C) = C2g , g ≥ 2.
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Alexander invariants

Alexander invariant is the Z[Gab]-module B(G ) = G ′/G ′′, where G ′ =
[G ,G ] and G ′′ = [G ′,G ′] are the 1st and 2nd derived subgroups.

The Z[Gab]-module structure on B(G ) is determined by the extension

0→ G ′/G ′′ → G/G ′′ → G/G ′ → 0.

with G/G ′ acting on the cosets of G ′′ via conjugation: gG ′ · hG ′′ =
ghg−1G ′′, for g ∈ G , h ∈ G ′.

Let g be a finitely generated graded Lie algebra. The infinitesimal
Alexander invariant of g is the graded S-module B(g) := g′/g′′. Here,
S is universal enveloping algebra of g/g′.

If G is a commutator-relators group, there is an isomorphism
B lin(G )⊗ k ∼= B(h(G ; k)). [Papadima-Suciu 04]
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Chen Lie algebras

The Chen Lie algebra of a group G is defined to be

gr(G/G ′′;k) :=
⊕
k≥1

(Γk(G/G ′′)/Γk+1(G/G ′′))⊗Z k.

The quotient map h : G � G/G ′′ induces gr(G ;k) � gr(G/G ′′;k).

The LCS ranks of G are defined as φk(G ) := rank(grk(G ;k)).

The Chen ranks of G are defined as θk(G ) := rank(grk(G/G ′′;k)).

θk(G ) = φk(G ) for k ≤ 3.

θk(Fn) = (k − 1)
(n+k−2

k

)
, k ≥ 2. [Chen 51]
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Hilbert series and Chen ranks

I := ker ε : Z[Gab]→ Z.

The module B(G ) has an I -adic filtration {I kB(G )}k≥0.
gr(B(G )) =

⊕
k≥0 I

kB(G )/I k+1B(G ) is a graded gr(Z[Gab])-module.

Proposition (Massey 80)

For each k ≥ 2, there exists an isomorphism

grk(G/G ′′) ∼= grk−2(B(G )).

Corollary

Hilb(B(G )⊗ k, t) =
∑
k≥0

θk+2(G )tk .
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Theorem (Labute 08, Suciu-W. 15)

For each i ≥ 2, the quotient map G � G/G (i) induces a natural
epimorphism of graded k-Lie algebras,

Ψ
(i)
G : gr(G ; k)/ gr(G ; k)(i) // // gr(G/G (i); k) .

Moreover, if G is a filtered-formal group, then each solvable quotient

G/G (i) is also filtered-formal, and the map Ψ
(i)
G is an isomorphism.

Corollary (Papadima-Suciu 04)

If G is a 1-formal group, then h(G ;k)/h(G ; k)(i) ∼= gr(G/G (i);k).

Corollary (Papadima-Suciu 04)

If G is a 1-formal group, then

Hilb(B(h(G ; k)), t) =
∑
k≥0

θk+2(G )tk .
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McCool groups (pure welded braid groups) (group of loops)

The McCool group PΣn is the group of basis-conjugating automor-
phisms, which is a subgroup of

IAn := ker(Aut(Fn) � GLn(Z)).

The McCool groups PΣn has a presentation [McCool (86)] with gen-
erators: xij , for 1 ≤ i 6= j ≤ n and relations: xijxikxjk = xjkxikxij ;
[xij , xkl ] = 1; [xij , xkj ] = 1, for i , j , k , l distinct.

H∗(PΣn,C) was computed by Jensen, McCammond, and Meier (06).

Theorem (D.Cohen 09)

The first resonance variety of McCool group PΣn is

R1
1(PΣn,C) =

⋃
1≤i<j≤n

Cij ∪
⋃

1≤i<j<k≤n
Cijk ,

where Cij = C2 and Cijk = C3.
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Upper McCool groups

The upper McCool group PΣ+
n is the subgroup of PΣn generated by

the xij for 1 ≤ i < j ≤ n.

PΣn and PΣ+
n are 1-formal.[Berceanu-Papadima 09]

F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the coho-
mology ring H∗(PΣ+

n ;Z). The LCS ranks φk(PΣ+
n ) = φk(Pn) and the

Betti numbers bk(PΣ+
n ) = bk(Pn), where Pn is the pure braid group.

They ask a question: are PΣ+
n and Pn isomorphic for n ≥ 4?

For n = 4, the question was answered by Bardakov and Mikhailov (08)
using Alexander polynomials. (There is a gap in their proof.)

Theorem (Suciu, W. 15)

The Chen ranks θk of PΣ+
n are given by θ1 =

(n
2

)
, θ2 =

(n
3

)
, θ3 = 2

(n+1
4

)
,

θk =

(
n + k − 2

k + 1

)
+ θk−1 =

k∑
i=3

(
n + i − 2

i + 1

)
+

(
n + 1

4

)
, k ≥ 4.
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Corollary

The pure braid group Pn, the upper McCool group PΣ+
n , and the product

group Πn :=
∏n−1

i=1 Fi are not isomorphic for n ≥ 4.

Proof:

θ4(Pn) = 3

(
n + 1

4

)
, θ4(PΣ+

n ) = 2

(
n + 1

4

)
+

(
n + 2

5

)
, θ4(Πn) = 3

(
n + 2

5

)
.

The Chen ranks of Pn and Πn were computed by D. Cohen and Suciu (95).

Theorem (Suciu, W. 15)

The first resonance variety of the upper McCool group PΣ+
n is

R1
1(PΣ+

n ,C) =
⋃

n≥i>j≥2
Ci ,j ,

where Ci ,j = Cj .
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Remark (Chen ranks conjecture, Suciu 01, Schenck-Suciu 04,
D. Cohen-Schenck 14)

Let cn be the number of n-dimensional components of R1
1(G ).

θk(G ) =
∑
n≥2

cm · θk(Fn), for k � 1.

This formula is true if G is a 1-formal, commutator-relators group, such
that the resonance variety R1

1(G ) is 0-isotropic, projectively disjoint, and
reduced as a scheme.

Examples satisfying these conditions include arrangement groups and
McCool groups. However, the upper McCool groups PΣ+

n do not satisfy
this formula for n ≥ 4.

Thank You!
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