Resonance varieties, Hilbert series and Chen ranks

He Wang (joint with Alex Suciu)

Northeastern University

Auslander Distinguished Lectures and International Conference Woods Hole, MA

April 29, 2015

Overview

- Cohomology jump loci
 - The resonance varieties
 - The characteristic varieties
- 2 Alexander Modules and Chen Lie algebras
- McCool groups
- Picture groups

• *G* : finitely generated group.

- *G* : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.

- *G* : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional C-vector spaces,

$$(A, a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

- *G* : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional C-vector spaces,

$$(A, a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

Definition

The *resonance varieties* of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_d^i(G,\mathbb{C}) = \{a \in A^1 \mid \dim_{\mathbb{C}} H^i(A;a) \geq d\},$$

defined for all integers $i \ge 1$ and $d \ge 1$.

- *G* : finitely generated group.
- Suppose $A := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional C-vector spaces,

$$(A, a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

Definition

The *resonance varieties* of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_d^i(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \geq d \},$$

defined for all integers $i \ge 1$ and $d \ge 1$.

•
$$\mathcal{R}^1_1(\mathbb{Z}^n,\mathbb{C}) = \{0\}; \ \mathcal{R}^1_1(\pi_1(\Sigma_g),\mathbb{C}) = \mathbb{C}^{2g}, \ g \ge 2.$$

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(G_{\operatorname{ab}}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\operatorname{id}(g) = 1$ for $g \in G$ and $f_i \in \operatorname{Hom}(G, \mathbb{C}^*)$.

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(G_{\operatorname{ab}}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\operatorname{id}(g) = 1$ for $g \in G$ and $f_i \in \operatorname{Hom}(G, \mathbb{C}^*)$.
- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \mathbb{T}(X)$.

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(G_{\operatorname{ab}}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\operatorname{id}(g) = 1$ for $g \in G$ and $f_i \in \operatorname{Hom}(G, \mathbb{C}^*)$.
- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \mathbb{T}(X)$.

Definition

The *characteristic varieties* of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}_d^i(X,\mathbb{C}) = \{
ho \in \mathbb{T}(X) = \mathsf{Hom}(G,\mathbb{C}^*) \mid \mathsf{dim}_\mathbb{C} H_i(X,\mathbb{C}_
ho) \geq d \}$$

for i > 1 and d > 1.

- X: connected CW-complex of finite type.
- $G = \pi_1(X)$.
- The character variety $\mathbb{T}(X) := \operatorname{Hom}(G, \mathbb{C}^*) = \operatorname{Hom}(G_{\operatorname{ab}}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\operatorname{id}(g) = 1$ for $g \in G$ and $f_i \in \operatorname{Hom}(G, \mathbb{C}^*)$.
- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \mathbb{T}(X)$.

Definition

The *characteristic varieties* of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}_d^i(X,\mathbb{C}) = \{
ho \in \mathbb{T}(X) = \mathsf{Hom}(G,\mathbb{C}^*) \mid \mathsf{dim}_\mathbb{C} H_i(X,\mathbb{C}_
ho) \geq d \}$$

for i > 1 and d > 1.

• $\mathcal{V}_1^1(T^n,\mathbb{C})=\{1\};\ \mathcal{V}_1^1(\Sigma_g,\mathbb{C})=(\mathbb{C}^*)^{2g} \text{ for } g\geq 2.$

Tangent Cone Theorem

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}^1_d(G,\mathbb{C}))$ equals $\mathcal{R}^1_d(G,\mathbb{C})$. Moreover, $\mathcal{R}^1_d(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

• Alexander invariant is the $\mathbb{Z}[G_{ab}]$ -module B(G) = G'/G'', where G' = [G, G] and G'' = [G', G'] are the 1st and 2ed derived subgroups.

- Alexander invariant is the $\mathbb{Z}[G_{ab}]$ -module B(G) = G'/G'', where G' = [G, G] and G'' = [G', G'] are the 1st and 2ed derived subgroups.
- ullet The $\mathbb{Z}[G_{ab}]$ -module structure on B(G) is determined by the extension

$$0 \rightarrow G'/G'' \rightarrow G/G'' \rightarrow G/G' \rightarrow 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.

- Alexander invariant is the $\mathbb{Z}[G_{ab}]$ -module B(G) = G'/G'', where G' = [G, G] and G'' = [G', G'] are the 1st and 2ed derived subgroups.
- ullet The $\mathbb{Z}[G_{ab}]$ -module structure on B(G) is determined by the extension

$$0 \to G'/G'' \to G/G'' \to G/G' \to 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.

• The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.

- Alexander invariant is the $\mathbb{Z}[G_{ab}]$ -module B(G) = G'/G'', where G' = [G, G] and G'' = [G', G'] are the 1st and 2ed derived subgroups.
- ullet The $\mathbb{Z}[G_{ab}]$ -module structure on B(G) is determined by the extension

$$0 \rightarrow G'/G'' \rightarrow G/G'' \rightarrow G/G' \rightarrow 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.

• The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.

Proposition (Hironaka(97), Libgober(98) ...)

 $\mathcal{V}_d^1(G,\mathbb{C}) = V(E_{d-1}(B(G)\otimes \mathbb{C}))$ for $d\geq 1$.

• The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}({\sf G};\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k({\sf G})/\Gamma_{k+1}({\sf G}))\otimes_{\mathbb{Z}}\mathbb{C}.$$

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}({\sf G};\mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k({\sf G})/\Gamma_{k+1}({\sf G})) \otimes_{\mathbb{Z}} \mathbb{C}.$$

$$\operatorname{gr}(G/G'';\mathbb{C}) := \bigoplus_{k>1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{C}.$$

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}(G;\mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

• The *Chen Lie algebra* of a group *G* is defined to be

$$\operatorname{gr}(G/G'';\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G/G'')/\Gamma_{k+1}(G/G''))\otimes_{\mathbb{Z}}\mathbb{C}.$$

• The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}({\sf G};\mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k({\sf G})/\Gamma_{k+1}({\sf G})) \otimes_{\mathbb{Z}} \mathbb{C}.$$

$$\operatorname{gr}(G/G'';\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G/G'')/\Gamma_{k+1}(G/G''))\otimes_{\mathbb{Z}}\mathbb{C}.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The *LCS ranks* of *G* are defined as $\phi_k(G) := \operatorname{rank}(\operatorname{gr}_k(G; \mathbb{C}))$.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}(G;\mathbb{C}) := \bigoplus_{k \geq 1} (\mathsf{\Gamma}_k(G)/\mathsf{\Gamma}_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

$$\operatorname{gr}(G/G'';\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G/G'')/\Gamma_{k+1}(G/G''))\otimes_{\mathbb{Z}}\mathbb{C}.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The *LCS ranks* of *G* are defined as $\phi_k(G) := \text{rank}(\text{gr}_k(G; \mathbb{C}))$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \operatorname{rank}(\operatorname{gr}_k(G/G''; \mathbb{C}))$.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}({\sf G};\mathbb{C}) := \bigoplus_{k \geq 1} (\mathsf{\Gamma}_k({\sf G})/\mathsf{\Gamma}_{k+1}({\sf G})) \otimes_{\mathbb{Z}} \mathbb{C}.$$

$$\operatorname{gr}(G/G'';\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G/G'')/\Gamma_{k+1}(G/G''))\otimes_{\mathbb{Z}}\mathbb{C}.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The *LCS ranks* of *G* are defined as $\phi_k(G) := \operatorname{rank}(\operatorname{gr}_k(G; \mathbb{C}))$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \operatorname{rank}(\operatorname{gr}_k(G/G''; \mathbb{C}))$.
- $\theta_k(G) = \phi_k(G)$ for $k \leq 3$.

- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = G' = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The associated graded Lie algebra of a group G is defined to be

$$\operatorname{\sf gr}(G;\mathbb{C}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{C}.$$

$$\operatorname{gr}(G/G'';\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G/G'')/\Gamma_{k+1}(G/G''))\otimes_{\mathbb{Z}}\mathbb{C}.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The *LCS ranks* of *G* are defined as $\phi_k(G) := \operatorname{rank}(\operatorname{gr}_k(G; \mathbb{C}))$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \operatorname{rank}(\operatorname{gr}_k(G/G''; \mathbb{C}))$.
- $\theta_k(G) = \phi_k(G)$ for $k \leq 3$.
- $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}, \ k \ge 2$. [Chen (51)]

• $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
- The module B(G) has an *I*-adic filtration $\{I^kB(G)\}_{k>0}$.

- $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
- The module B(G) has an *I*-adic filtration $\{I^kB(G)\}_{k>0}$.
- $gr(B(G)) = \bigoplus_{k>0} I^k B(G)/I^{k+1} B(G)$ is a graded $gr(\mathbb{Z}[G_{ab}])$ -module.

- $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
- The module B(G) has an I-adic filtration $\{I^kB(G)\}_{k\geq 0}$.
- $gr(B(G)) = \bigoplus_{k \geq 0} I^k B(G) / I^{k+1} B(G)$ is a graded $gr(\mathbb{Z}[G_{ab}])$ -module.

Proposition (Massey (80))

For each $k \ge 2$, there exists an isomorphism

$$\operatorname{gr}_k(G/G'') \cong \operatorname{gr}_{k-2}(B(G)).$$

- $I := \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
- The module B(G) has an I-adic filtration $\{I^k B(G)\}_{k\geq 0}$.
- $gr(B(G)) = \bigoplus_{k>0} I^k B(G)/I^{k+1} B(G)$ is a graded $gr(\mathbb{Z}[G_{ab}])$ -module.

Proposition (Massey (80))

For each $k \ge 2$, there exists an isomorphism

$$\operatorname{gr}_k(G/G'') \cong \operatorname{gr}_{k-2}(B(G)).$$

Corollary

$$\mathsf{Hilb}(B(G)\otimes \mathbb{C},t) = \sum_{k\geq 0} \theta_{k+2}(G)t^k.$$

• The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of $IA_n := \ker(\operatorname{Aut}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})).$

- The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of $IA_n := \ker(\operatorname{Aut}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})).$
- The McCool groups wP_n has a presentation [McCool (86)] with generators: x_{ij} , for $1 \le i \ne j \le n$ and relations: $x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}$; $[x_{ii}, x_{kl}] = 1$; $[x_{ii}, x_{ki}] = 1$, for i, j, k, l distinct.

- The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of $IA_n := \ker(\operatorname{Aut}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})).$
- The McCool groups wP_n has a presentation [McCool (86)] with generators: x_{ij} , for $1 \le i \ne j \le n$ and relations: $x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}$; $[x_{ij}, x_{kl}] = 1$; $[x_{ij}, x_{ki}] = 1$, for i, j, k, l distinct.
- $H^*(wP_n, \mathbb{C})$ was computed by Jensen, McCammond, and Meier (06).

- The McCool group wP_n is the group of basis-conjugating automorphisms, which is a subgroup of $IA_n := \ker(\operatorname{Aut}(F_n) \twoheadrightarrow \operatorname{GL}_n(\mathbb{Z})).$
- The McCool groups wP_n has a presentation [McCool (86)] with generators: x_{ij} , for $1 \le i \ne j \le n$ and relations: $x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}$; $[x_{ij}, x_{kl}] = 1$; $[x_{ij}, x_{kj}] = 1$, for i, j, k, l distinct.
- $H^*(wP_n, \mathbb{C})$ was computed by Jensen, McCammond, and Meier (06).

Theorem (D.Cohen (09))

The first resonance variety of McCool group wP_n is

$$\mathcal{R}_1^1(wP_n,\mathbb{C}) = \bigcup_{1 \leq i < j \leq n} C_{ij} \cup \bigcup_{1 \leq i < j < k \leq n} C_{ijk},$$

where $C_{ii} = \mathbb{C}^2$ and $C_{iik} = \mathbb{C}^3$.

Upper McCool groups

• The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ii} for $1 \le i < j \le n$.

Upper McCool groups

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \le i < j \le n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+; \mathbb{Z})$.

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \le i < j \le n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+;\mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group.

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \le i < j \le n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+;\mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group. They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$?

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \le i < j \le n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+;\mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group. They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$?
- For n = 4, the question was answered by Bardakov and Mikhailov (08) using Alexander polynomials. (There is a gap in the proof.)

- The upper McCool group wP_n^+ is the subgroup of wP_n generated by the x_{ij} for $1 \le i < j \le n$.
- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the cohomology ring $H^*(wP_n^+;\mathbb{Z})$. The LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n)$ and the Betti numbers $b_k(wP_n^+) = b_k(P_n)$, where P_n is the pure braid group. They ask a question: are wP_n^+ and P_n isomorphic for $n \geq 4$?
- For n = 4, the question was answered by Bardakov and Mikhailov (08) using Alexander polynomials. (There is a gap in the proof.)

Theorem (Suciu, W. (15))

The Chen ranks θ_k of wP⁺ are given by $\theta_1 = \binom{n}{2}, \theta_2 = \binom{n}{3}, \theta_3 = 2\binom{n+1}{4}$,

$$\theta_k = \binom{n+k-2}{k+1} + \theta_{k-1} = \sum_{i=3}^k \binom{n+i-2}{i+1} + \binom{n+1}{4}, \ k \ge 4.$$

The pure braid group P_n , the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \ge 4$.

The pure braid group P_n , the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \ge 4$.

Proof:

$$\theta_4(P_n) = 3\binom{n+1}{4}, \theta_4(P\Sigma_n^+) = 2\binom{n+1}{4} + \binom{n+2}{5}, \theta_4(\Pi_n) = 3\binom{n+2}{5}.$$

The Chen ranks of P_n and Π_n were computed by D. Cohen and Suciu (95).

The pure braid group P_n , the upper McCool group $P\Sigma_n^+$, and the product group $\Pi_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \ge 4$.

Proof:

$$\theta_4(P_n) = 3\binom{n+1}{4}, \theta_4(P\Sigma_n^+) = 2\binom{n+1}{4} + \binom{n+2}{5}, \theta_4(\Pi_n) = 3\binom{n+2}{5}.$$

The Chen ranks of P_n and Π_n were computed by D. Cohen and Suciu (95).

Theorem (Suciu, W. (15))

The first resonance variety of upper McCool group wP_n^+ is

$$\mathcal{R}_1^1(wP_n^+,\mathbb{C}) = \bigcup_{1 \leq i < j \leq n-1} C_{i,j},$$

where $C_{i,j} = \mathbb{C}^{j+1}$.

Remark

There is a close connection (under some conditions) between the Chen ranks $\theta_k(G)$ and the resonance varieties $\mathcal{R}^1_1(G)$:

$$\theta_k(G) = \sum_{n \geq 2} c_m \cdot \theta_k(F_n), \ \text{for} \ k \gg 1,$$

where c_n is the number of n-dimensional components of $\mathcal{R}^1_1(G)$. (Suciu(01)) (Schenck and Suciu(04)) (D. Cohen and Schenck (14))

The pure braid groups P_n , the McCool groups wP_n , satisfy this formula. However, the upper McCool groups wP_n^+ does not satisfies this formula for $n \ge 4$.

• For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
- $G(A_n)$ is generated by x_{ij} , $(1 \le i < j \le n+1)$, with relations $\begin{cases} (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing;} \\ (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k, \end{cases}$ where $(a, b) = b^{-1}aba^{-1}$.

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
- $G(A_n)$ is generated by x_{ij} , $(1 \le i < j \le n+1)$, with relations $\begin{cases} (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing;} \\ (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k, \end{cases}$ where $(a, b) = b^{-1}aba^{-1}$.
- $R(A_n) := \langle x_{i,i+1}, (1 \le i \le n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j-1 \rangle$.

- For every quiver of finite type there is a finitely presented group called picture group (Igusa, Orr, Todorov and Weyman (14)).
- $G(A_n)$: the picture group of type A_n with straight orientation, which is the fundamental group of the classifying space of the non-crossing category (Igusa (14)).
- $G(A_n)$ is generated by x_{ij} , $(1 \le i < j \le n+1)$, with relations $\begin{cases} (x_{ij}, x_{kl}) = 1, & \text{if } (i, j), (k, l) \text{ are noncrossing;} \\ (x_{ij}, x_{jk}) = x_{ik}, & \text{if } i < j < k, \end{cases}$ where $(a, b) = b^{-1}aba^{-1}$.
- $R(A_n) := \langle x_{i,i+1}, (1 \leq i \leq n) \mid (x_{i,i+1}, x_{j,j+1}) = 1, i < j-1 \rangle.$

Lemma

There exists a surjection $R(A_n) \twoheadrightarrow G(A_n)$ inducing isomorphism on the resonance varieties $\mathcal{R}^1_d(G(A_n)) = \mathcal{R}^1_d(R(A_n))$.

• All resonance varieties and characteristic varieties of right-angled Artin groups were computed by Papadima and Suciu (09). We only review the first resonance varieties here.

 All resonance varieties and characteristic varieties of right-angled Artin groups were computed by Papadima and Suciu (09). We only review the first resonance varieties here.

Theorem (Papadima-Suciu (06))

Let $\Gamma = (V, E)$ be a finite graph. Then $\mathcal{R}^1_1(G_{\Gamma}; \mathbb{C}) = \bigcup_W \mathbb{C}^W$, where the union is over all subsets $W \subset V$ such that the induced subgraph Γ_W is disconnected. Here, \mathbb{C}^W is the corresponding coordinate subspace of \mathbb{C}^V .

Recall that the graph corresponding to $R(A_n)$ has vertex set $\{x_{i,i+1}, (1 \le i \le n)\}$ and edges $(x_{i,i+1}, x_{j,j+1})$ for i < j-1.

$$\mathcal{R}^1_1(G(A_n)) = \mathcal{R}^1_1(R(A_n)) = \bigcup_{i=1}^{n-2} \mathbb{C}^{W_i}$$

where $W_i = \{x_{i,i+1}, x_{i+1,i+2}, x_{i+2,i+3}\}.$

Recall that the graph corresponding to $R(A_n)$ has vertex set $\{x_{i,i+1}, (1 \le i \le n)\}$ and edges $(x_{i,i+1}, x_{j,j+1})$ for i < j-1.

$$\mathcal{R}^1_1(G(A_n)) = \mathcal{R}^1_1(R(A_n)) = \bigcup_{i=1}^{n-2} \mathbb{C}^{W_i}$$

where $W_i = \{x_{i,i+1}, x_{i+1,i+2}, x_{i+2,i+3}\}.$

Recall that the graph corresponding to $R(A_n)$ has vertex set $\{x_{i,i+1}, (1 \le i \le n)\}$ and edges $(x_{i,i+1}, x_{j,j+1})$ for i < j-1.

$$\mathcal{R}^1_1(G(A_n)) = \mathcal{R}^1_1(R(A_n)) = \bigcup_{i=1}^{n-2} \mathbb{C}^{W_i}$$

where $W_i = \{x_{i,i+1}, x_{i+1,i+2}, x_{i+2,i+3}\}.$

Example

$$\mathcal{R}_{1}^{1}(G(A_{3})) = \mathbb{C}^{3} = H^{1}(G(A_{3}); \mathbb{C}).$$

$$\mathcal{R}_{1}^{1}(G(A_{4})) = \mathbb{C}^{3} \cup \mathbb{C}^{3} \subset H^{1}(G(A_{4}); \mathbb{C}) = \mathbb{C}^{4}.$$

$$\mathcal{R}_{1}^{1}(G(A_{5})) = \mathbb{C}^{3} \cup \mathbb{C}^{3} \cup \mathbb{C}^{3} \subset H^{1}(G(A_{5}); \mathbb{C}) = \mathbb{C}^{5}.$$

$$\mathcal{R}_{1}^{1}(G(A_{6})) = \mathbb{C}^{3} \cup \mathbb{C}^{3} \cup \mathbb{C}^{3} \cup \mathbb{C}^{3} \subset H^{1}(G(A_{6}); \mathbb{C}) = \mathbb{C}^{6}.$$

• Compute the characteristic varieties of the picture group $G(A_n)$.

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.
- Investigate how these algebraic invariants reflect the information of the picture groups and the corresponding quivers.

- Compute the characteristic varieties of the picture group $G(A_n)$.
- Compute the Chen ranks of $G(A_n)$ and see the relations with the characteristic varieties.
- Investigate how these algebraic invariants reflect the information of the picture groups and the corresponding quivers.

Thank You!