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Alexander Modules

X : connected finite CW-complex.

G := π1(X , x0).

p : X ab → X : the maximal abelian cover with fiber F .

The deck transformation group Gab acts on X ab.

The “Crowell exact sequence” of X as Z[Gab]-modules:

0 // H1(X ab;Z) // H1(X ab,F ;Z) // I (Gab) // 0

where I (Gab) = ker ε : Z[Gab]→ Z.

Alexander module A(G ) := H1(X ab,F ;Z).

Alexander invariant B(G ) = H1(X ab;Z) = G ′/G ′′, where
G ′′ = [G ′,G ′] is the second derived subgroup.

The Z[Gab]-module structure on B(G ) is determined by the extension

0→ G ′/G ′′ → G/G ′′ → G/G ′ → 0.

with G/G ′ acting on the cosets of G ′′ via conjugation:
gG ′ · hG ′′ = ghg−1G ′′, for g ∈ G , h ∈ G ′.
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Chen Lie algebra

The lower central series G : Γ1G = G , Γk+1G = [ΓkG ,G ], k ≥ 1.

The Chen Lie algebra of a group G is defined to be

gr(G/G ′′;k) :=
⊕
k≥1

(Γk(G/G ′′)/Γk+1(G/G ′′))⊗Z k.

The quotient map h : G � G/G ′′ induces gr(G ;k) � gr(G/G ′′;k).

The Chen ranks of G are defined as θk(G ) := rank(grk(G/G ′′;k)).

θk(Fn) = (k − 1)
(n+k−2

k

)
, k ≥ 2. [Chen51]

The module B(G ) has an I -adic filtration {I kB(G )}k≥0.

gr(B(G )) =
⊕

k≥0 I
kB(G )/I k+1B(G ) is a graded gr(Z[Gab])-module.

Proposition (Massey 80)

For each k ≥ 2, there exists an isomorphism

grk(G/G ′′) ∼= grk−2(B(G )).
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Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over C)

W i
d(X ,C) = V (Ed−1(Hi (X

ab,C)))

is the subvariety of T(X ), defined by the Fitting ideals.

The character variety T(X ) := Hom(G ,C∗) = Hom(Gab,C∗) is an
algebraic group, with multiplication f1 ◦ f2(g) = f1(g)f2(g) and
identity id(g) = 1 for g ∈ G and fi ∈ Hom(G ,C∗).
The i-th Fitting ideal of a C[Gab]-module is the ideal in C[Gab]
generated by the co-dimension i minors of the presentation matrix.

W1
d(G ,C) = V (Ed−1(B(G )⊗ C)) = V (Ed(A(G )⊗ C)) for d ≥ 1.

W1
1 (T n,C) = {1}.
W1

d(Σg ,C) = (C∗)2g for g > 1, d < 2g − 1.
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Example (Borromean rings)

Let X be the complement in S3 of the Borromean rings:
A presentation for the fundamental group

G = π1(X ) = 〈x , y , z | zyz−1xzy−1z−1 = yxy−1, xzx−1yxz−1x = zyz−1〉.

C[Gab] = C[t±1
1 , t±1

2 , t±1
3 ].

A(G ) =coker

(
0 (t3 − 1)(1− t1) (1− t1)(1− t2)

(1− t2)(1− t3) 0 (t1 − 1)(1− t2)

)

B(G ) = coker

t3 − 1 0 0
0 t2 − 1 0
0 0 t1 − 1


The Alexander variety
W1

1 (X ,C) = {t1 = 1} ∪ {t2 = 1} ∪ {t3 = 1} = (C∗)2 ∪ (C∗)2 ∪ (C∗)2;
W1

2 (X ,C) = {t1 = t2 = 1} ∪ {t2 = t3 = 1} ∪ {t3 = t1 = 1};
W1

3 (X ,C) = {1}.
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The characteristic varieties

The rank 1 local system on X is a 1-dimensional C-vector space Cρ
with a right CG -module structure Cρ × G → Cρ given by ρ(g) · a for
a ∈ Cρ and g ∈ G for ρ ∈ Hom(G ,C∗).

Hi (X ,Cρ) := Hi (C∗(X̃ ,C)⊗CG Cρ) the homology group of X with
coefficient Cρ.

Definition

The characteristic varieties of X over C are the Zariski closed subsets

V id(X ,C) = {ρ ∈ T(X ) = Hom(G ,C∗) | dimCHi (X ,Cρ) ≥ d}

for i ≥ 1 and d ≥ 1.

Proposition (Papadima,Suciu10)

q⋃
i=0

V i1(X ,C) =

q⋃
i=0

W i
1(X ,C).
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The resonance varieties

A = H∗(G ,C). For each a ∈ A1, we have a2 = 0.

Define a cochain complex of finite-dimensional C-vector spaces,

(A, a) : A0 a∪−−−→ A1 a∪−−−→ A2 a∪−−−→ · · · ,

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A1

Ri
d(G ,C) = {a ∈ A1 | dimCH

i (A; a) ≥ d},

defined for all integers i ≥ 1 and d ≥ 1.

R1
1(T n,C) = {0};
R1

1(Σg ,C) = C2g , g ≥ 2.
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(A, a) : A0 a∪−−−→ A1 a∪−−−→ A2 a∪−−−→ · · · ,

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A1

Ri
d(G ,C) = {a ∈ A1 | dimCH

i (A; a) ≥ d},

defined for all integers i ≥ 1 and d ≥ 1.
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1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



1-Formality and Tangent Cone Theorem

A space X is 1-formal if there exists a cdga morphism from the
minimal model M(X ) to (H∗(X ,Q), 0) inducing isomorphism in
cohomology of degree 1 and monomorphism in degree 2.

A group G is 1-formal if the Eilenberg-MacLane space K (G , 1) is
1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone TC1(V1
d(G ,C)) equals R1

d(G ,C).
Moreover, R1

d(G ,C) is a union of rationally defined linear subspaces of
H1(G ,C).

Example (Borromean link again)

R1
d(X ,C) = H1(X ;C) = C3 for d ≤ 3.

TC1(V1
1 (G ,C)) = {x1 = 0} ∪ {x2 = 0} ∪ {x3 = 0}.

⇒ X is not 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 9 / 1



The configuration spaces
Let M be a connected manifold with dimRM ≥ 2. The configuration space

F(M, n) = {(x1, · · · , xn) ∈ M × · · · ×M | xi 6= xj for i 6= j}.

There is a free action of Sn on F(M, n) by permutation of coordinates,
with orbit space C(M, n) = F(M, n)/Sn.

Example: The braid group Bn = π1(C(R2, n)) and pure braid group

Pn = π1(F(R2, n)) with 1→ Pn → Bn
ρ−→ Sn → 1.

Proposition (Cohen, Suciu 95)

The Chen ranks of Pn are given by

θ1(Pn) =

(
n

2

)
; θ2(Pn) =

(
n

3

)
; θk(Pn) = (k − 1)

(
n + 1

4

)
, for k ≥ 3

Corollary

Pn is not isomorphic to Πn = F1 × · · · × Fn−1 for n ≥ 4.
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The pure braid groups on Riemann surface

Pg ,n = π1(F(Σg , n)), where F(Σg , n) is the configuration of Σg ,
which is a smooth compact complex curve of genus g (g ≥ 1).

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of P1,n is

R1
1(P1,n,C) =

{
(x , y) ∈ Cn × Cn

∣∣∣∣ ∑n
i=1 xi =

∑n
i=1 yi = 0

xiyj − xjyi = 0, for 1 < i < j ≤ n

}

Corollary

Pn,1 is not 1-formal for n ≥ 3.
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The pure virtual braid groups

The virtual braids comes from the virtual knot theory by Kauffman.

The generators σi and si of the virtual braid groups vBn are

1 i−1 i i+1 i+2 n

· · · · · · �
1 i−1 i i+1 i+2 n

· · · · · ·

The relations for vBn include the relations for Bn and Sn, and{
σi sj = sjσi , |i − j | ≥ 2,
si si+1σi = σi+1si si+1, i = 1, . . . , n − 2.

(1)

1→ vPn → vBn
ρ−→ Sn → 1.

The pure virtual braid groups vPn has presentation [Bardakov04]〈
xij , (1 ≤ i 6= j ≤ n)

∣∣∣∣ xijxikxjk = xjkxikxij ;
xijxkl = xklxij ; i , j , k , l distinct

〉
.

vP+
n is the quotient of vPn by the relations xijxji = 1 for i 6= j .
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Theorem (Suciu, W. 15)

The pure virtual braid groups vPn and vP+
n are 1-formal if and only if

n ≤ 3.

Sketch of proof:

Lemma

There are split monomorphisms

vP+
2� _

��

� � // vP+
3� _

��

� � // vP+
4� _

��

� � // vP+
5� _

��

� � // vP+
6� _

��

� � // . . .

vP2
� � // vP3

� � // vP4
� � // vP5

� � // vP6
� � // . . .

Lemma

Suppose there is a split monomorphism ι : N ↪→ G .
If G is 1-formal, then N is also 1-formal.
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Lemma

The group vP3 is 1-formal.

Next we show that vP+
4 is not 1-formal.

Lemma

The first resonance variety R1
1(vP+

4 ,C) is the subvariety of C6 given by
the equations

x12x24(x13 + x23) + x13x34(x12 − x23)− x24x34(x12 + x13) = 0,

x12x23(x14 + x24) + x12x34(x23 − x14) + x14x34(x23 + x24) = 0,

x13x23(x14 + x24) + x14x24(x13 + x23) + x34(x13x23 − x14x24) = 0,

x12(x13x14 − x23x24) + x34(x13x23 − x14x24) = 0.

⇒ The group vP+
4 is not 1-formal.
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The pure welded braid groups (McCool groups)

The welded braid group wBn has the same generators as vBn, adding
one more class of relations

σiσi+1si = si+1σiσi+1, i = 1, 2, . . . , n − 2.

1→ wPn → wBn
ρ−→ Sn → 1.

The pure welded braid groups wPn has presentation [McCool 86]〈
xij , (1 ≤ i 6= j ≤ n)

∣∣∣∣∣∣
xijxikxjk = xjkxikxij ;
xijxkl = xklxij ; i , j , k , l distinct
xijxkj = xkjxij ; i , j , k distinct

〉
.

There is a subgroup of wPn generated by the xij for 1 ≤ i < j ≤ n,
denoted by wP+

n . The group wPn is called McCool group and wP+
n is

called upper McCool group.
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Theorem (D.Cohen 09)

The first resonance variety of McCool group wPn is

R1
1(wPn,C) =

⋃
1≤i<j≤n

Cij ∪
⋃

1≤i<j<k≤n
Cijk ,

where Cij = C2 and Cijk = C3.

Theorem (Suciu, W. 15)

The first resonance variety of upper McCool group wP+
n is

R1
1(wP+

n ,C) =
⋃

1≤i<j≤n−1

Ci ,j ,

where Ci ,j = Cj+1.
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Future work
The relations between the Chen ranks θk(G ) and R1

1(G )

θk(G ) =
∑
m≥2

cm · θk(Fm)

where cm is the number of m-dimensional components of R1
1(G ).

(Schenck and Suciu04) (Cohen and Schenck14)

The relations between the Chen ranks θk(G ) and V1
1 (G ). Replace cm

in the above formula by the number of m-dimensional components of
TC1(V1(G )).

Thank You!
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