Cohomology jump loci of configuration spaces

He Wang
(Joint with Alexander Suciu)

Northeastern University

Special Session on
Algebraic Structures Motivated by and Applied to Knot Theory Spring Eastern Sectional Meeting, Washington, DC

March 8, 2015

Overview

Alexander Modules

- X : connected finite CW-complex.
- $G:=\pi_{1}\left(X, x_{0}\right)$.

Alexander Modules

- X : connected finite CW-complex.
- $G:=\pi_{1}\left(X, x_{0}\right)$.
- $p: X^{\mathrm{ab}} \rightarrow X$: the maximal abelian cover with fiber F.
- The deck transformation group $G_{a b}$ acts on $X^{a b}$.

Alexander Modules

- X : connected finite CW-complex.
- $G:=\pi_{1}\left(X, x_{0}\right)$.
- $p: X^{\mathrm{ab}} \rightarrow X$: the maximal abelian cover with fiber F.
- The deck transformation group $G_{a b}$ acts on $X^{a b}$.
- The "Crowell exact sequence" of X as $\mathbb{Z}\left[G_{a b}\right]$-modules:

$$
0 \longrightarrow H_{1}\left(X^{\mathrm{ab}} ; \mathbb{Z}\right) \longrightarrow H_{1}\left(X^{\mathrm{ab}}, F ; \mathbb{Z}\right) \longrightarrow I\left(G_{\mathrm{ab}}\right) \longrightarrow 0
$$

where $I\left(G_{\mathrm{ab}}\right)=\operatorname{ker} \epsilon: \mathbb{Z}\left[G_{a b}\right] \rightarrow \mathbb{Z}$.

Alexander Modules

- X : connected finite CW-complex.
- $G:=\pi_{1}\left(X, x_{0}\right)$.
- $p: X^{\mathrm{ab}} \rightarrow X$: the maximal abelian cover with fiber F.
- The deck transformation group $G_{a b}$ acts on $X^{a b}$.
- The "Crowell exact sequence" of X as $\mathbb{Z}\left[G_{a b}\right]$-modules:

$$
0 \longrightarrow H_{1}\left(X^{\mathrm{ab}} ; \mathbb{Z}\right) \longrightarrow H_{1}\left(X^{\mathrm{ab}}, F ; \mathbb{Z}\right) \longrightarrow I\left(G_{\mathrm{ab}}\right) \longrightarrow 0
$$

where $I\left(G_{a b}\right)=\operatorname{ker} \epsilon: \mathbb{Z}\left[G_{a b}\right] \rightarrow \mathbb{Z}$.

- Alexander module $A(G):=H_{1}\left(X^{\mathrm{ab}}, F ; \mathbb{Z}\right)$.
- Alexander invariant $B(G)=H_{1}\left(X^{\mathrm{ab}} ; \mathbb{Z}\right)=G^{\prime} / G^{\prime \prime}$, where $G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$ is the second derived subgroup.

Alexander Modules

- X : connected finite CW-complex.
- $G:=\pi_{1}\left(X, x_{0}\right)$.
- $p: X^{\mathrm{ab}} \rightarrow X$: the maximal abelian cover with fiber F.
- The deck transformation group $G_{a b}$ acts on $X^{a b}$.
- The "Crowell exact sequence" of X as $\mathbb{Z}\left[G_{a b}\right]$-modules:

$$
0 \longrightarrow H_{1}\left(X^{\mathrm{ab}} ; \mathbb{Z}\right) \longrightarrow H_{1}\left(X^{\mathrm{ab}}, F ; \mathbb{Z}\right) \longrightarrow I\left(G_{\mathrm{ab}}\right) \longrightarrow 0
$$

where $I\left(G_{a b}\right)=\operatorname{ker} \epsilon: \mathbb{Z}\left[G_{a b}\right] \rightarrow \mathbb{Z}$.

- Alexander module $A(G):=H_{1}\left(X^{\text {ab }}, F ; \mathbb{Z}\right)$.
- Alexander invariant $B(G)=H_{1}\left(X^{\mathrm{ab}} ; \mathbb{Z}\right)=G^{\prime} / G^{\prime \prime}$, where $G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$ is the second derived subgroup.
- The $\mathbb{Z}\left[G_{\mathrm{ab}}\right]$-module structure on $B(G)$ is determined by the extension

$$
0 \rightarrow G^{\prime} / G^{\prime \prime} \rightarrow G / G^{\prime \prime} \rightarrow G / G^{\prime} \rightarrow 0
$$

with G / G^{\prime} acting on the cosets of $G^{\prime \prime}$ via conjugation: $g G^{\prime} \cdot h G^{\prime \prime}=g h g^{-1} G^{\prime \prime}$, for $g \in G, h \in G^{\prime}$.

Chen Lie algebra

- The lower central series $G: \Gamma_{1} G=G, \Gamma_{k+1} G=\left[\Gamma_{k} G, G\right], k \geq 1$.
- The Chen Lie algebra of a group G is defined to be

$$
\operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right):=\bigoplus_{k \geq 1}\left(\Gamma_{k}\left(G / G^{\prime \prime}\right) / \Gamma_{k+1}\left(G / G^{\prime \prime}\right)\right) \otimes_{\mathbb{Z}} \mathbb{k}
$$

- The quotient map $h: G \rightarrow G / G^{\prime \prime}$ induces $\operatorname{gr}(G ; \mathbb{k}) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right)$.

Chen Lie algebra

- The lower central series $G: \Gamma_{1} G=G, \Gamma_{k+1} G=\left[\Gamma_{k} G, G\right], k \geq 1$.
- The Chen Lie algebra of a group G is defined to be

$$
\operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right):=\bigoplus_{k \geq 1}\left(\Gamma_{k}\left(G / G^{\prime \prime}\right) / \Gamma_{k+1}\left(G / G^{\prime \prime}\right)\right) \otimes_{\mathbb{Z}} \mathbb{k}
$$

- The quotient map $h: G \rightarrow G / G^{\prime \prime}$ induces $\operatorname{gr}(G ; \mathbb{k}) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right)$.
- The Chen ranks of G are defined as $\theta_{k}(G):=\operatorname{rank}\left(\operatorname{gr}_{k}\left(G / G^{\prime \prime} ; \mathbb{k}\right)\right)$.
- $\theta_{k}\left(F_{n}\right)=(k-1)\binom{n+k-2}{k}, k \geq 2$. [Chen51]

Chen Lie algebra

- The lower central series $G: \Gamma_{1} G=G, \Gamma_{k+1} G=\left[\Gamma_{k} G, G\right], k \geq 1$.
- The Chen Lie algebra of a group G is defined to be

$$
\operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right):=\bigoplus_{k \geq 1}\left(\Gamma_{k}\left(G / G^{\prime \prime}\right) / \Gamma_{k+1}\left(G / G^{\prime \prime}\right)\right) \otimes_{\mathbb{Z}} \mathbb{k}
$$

- The quotient map $h: G \rightarrow G / G^{\prime \prime}$ induces $\operatorname{gr}(G ; \mathbb{k}) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right)$.
- The Chen ranks of G are defined as $\theta_{k}(G):=\operatorname{rank}\left(\operatorname{gr}_{k}\left(G / G^{\prime \prime} ; \mathbb{k}\right)\right)$.
- $\theta_{k}\left(F_{n}\right)=(k-1)\binom{n+k-2}{k}, k \geq 2$. [Chen51]
- The module $B(G)$ has an I-adic filtration $\left\{I^{k} B(G)\right\}_{k \geq 0}$.
- $\operatorname{gr}(B(G))=\bigoplus_{k \geq 0} I^{k} B(G) / I^{k+1} B(G)$ is a graded $\operatorname{gr}\left(\mathbb{Z}\left[G_{\mathrm{ab}}\right]\right)$-module.

Chen Lie algebra

- The lower central series $G: \Gamma_{1} G=G, \Gamma_{k+1} G=\left[\Gamma_{k} G, G\right], k \geq 1$.
- The Chen Lie algebra of a group G is defined to be

$$
\operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right):=\bigoplus_{k \geq 1}\left(\Gamma_{k}\left(G / G^{\prime \prime}\right) / \Gamma_{k+1}\left(G / G^{\prime \prime}\right)\right) \otimes_{\mathbb{Z}} \mathbb{k}
$$

- The quotient map $h: G \rightarrow G / G^{\prime \prime}$ induces $\operatorname{gr}(G ; \mathbb{k}) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime} ; \mathbb{k}\right)$.
- The Chen ranks of G are defined as $\theta_{k}(G):=\operatorname{rank}\left(\operatorname{gr}_{k}\left(G / G^{\prime \prime} ; \mathbb{k}\right)\right)$.
- $\theta_{k}\left(F_{n}\right)=(k-1)\binom{n+k-2}{k}, k \geq 2$. [Chen51]
- The module $B(G)$ has an I-adic filtration $\left\{I^{k} B(G)\right\}_{k \geq 0}$.
- $\operatorname{gr}(B(G))=\bigoplus_{k \geq 0} I^{k} B(G) / I^{k+1} B(G)$ is a graded $\operatorname{gr}\left(\mathbb{Z}\left[G_{\mathrm{ab}}\right]\right)$-module.

Proposition (Massey 80)

For each $k \geq 2$, there exists an isomorphism

$$
\operatorname{gr}_{k}\left(G / G^{\prime \prime}\right) \cong \operatorname{gr}_{k-2}(B(G))
$$

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X):=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(G_{a b}, \mathbb{C}^{*}\right)$ is an algebraic group, with multiplication $f_{1} \circ f_{2}(g)=f_{1}(g) f_{2}(g)$ and identity $\operatorname{id}(g)=1$ for $g \in G$ and $f_{i} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X):=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(G_{\mathrm{ab}}, \mathbb{C}^{*}\right)$ is an algebraic group, with multiplication $f_{1} \circ f_{2}(g)=f_{1}(g) f_{2}(g)$ and identity $\operatorname{id}(g)=1$ for $g \in G$ and $f_{i} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- The i-th Fitting ideal of a $\mathbb{C}\left[G_{\mathrm{ab}}\right]$-module is the ideal in $\mathbb{C}\left[G_{\mathrm{ab}}\right]$ generated by the co-dimension i minors of the presentation matrix.

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X):=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(G_{\mathrm{ab}}, \mathbb{C}^{*}\right)$ is an algebraic group, with multiplication $f_{1} \circ f_{2}(g)=f_{1}(g) f_{2}(g)$ and identity $\operatorname{id}(g)=1$ for $g \in G$ and $f_{i} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- The i-th Fitting ideal of a $\mathbb{C}\left[G_{\mathrm{ab}}\right]$-module is the ideal in $\mathbb{C}\left[G_{\mathrm{ab}}\right]$ generated by the co-dimension i minors of the presentation matrix.
- $\mathcal{W}_{d}^{1}(G, \mathbb{C})=V\left(E_{d-1}(B(G) \otimes \mathbb{C})\right)=V\left(E_{d}(A(G) \otimes \mathbb{C})\right)$ for $d \geq 1$.

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X):=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(G_{\mathrm{ab}}, \mathbb{C}^{*}\right)$ is an algebraic group, with multiplication $f_{1} \circ f_{2}(g)=f_{1}(g) f_{2}(g)$ and identity $\operatorname{id}(g)=1$ for $g \in G$ and $f_{i} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- The i-th Fitting ideal of a $\mathbb{C}\left[G_{\mathrm{ab}}\right]$-module is the ideal in $\mathbb{C}\left[G_{\mathrm{ab}}\right]$ generated by the co-dimension i minors of the presentation matrix.
- $\mathcal{W}_{d}^{1}(G, \mathbb{C})=V\left(E_{d-1}(B(G) \otimes \mathbb{C})\right)=V\left(E_{d}(A(G) \otimes \mathbb{C})\right)$ for $d \geq 1$.
- $\mathcal{W}_{1}^{1}\left(T^{n}, \mathbb{C}\right)=\{1\}$.

Alexander varieties

Definition (Libgober 1992)

The Alexander variety of X (over \mathbb{C})

$$
\mathcal{W}_{d}^{i}(X, \mathbb{C})=V\left(E_{d-1}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X):=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(G_{\mathrm{ab}}, \mathbb{C}^{*}\right)$ is an algebraic group, with multiplication $f_{1} \circ f_{2}(g)=f_{1}(g) f_{2}(g)$ and identity $\operatorname{id}(g)=1$ for $g \in G$ and $f_{i} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- The i-th Fitting ideal of a $\mathbb{C}\left[G_{a b}\right]$-module is the ideal in $\mathbb{C}\left[G_{a b}\right]$ generated by the co-dimension i minors of the presentation matrix.
- $\mathcal{W}_{d}^{1}(G, \mathbb{C})=V\left(E_{d-1}(B(G) \otimes \mathbb{C})\right)=V\left(E_{d}(A(G) \otimes \mathbb{C})\right)$ for $d \geq 1$.
- $\mathcal{W}_{1}^{1}\left(T^{n}, \mathbb{C}\right)=\{1\}$.
- $\mathcal{W}_{d}^{1}\left(\Sigma_{g}, \mathbb{C}\right)=\left(\mathbb{C}^{*}\right)^{2 g}$ for $g>1, d<2 g-1$.

Example (Borromean rings)

Let X be the complement in \mathbb{S}^{3} of the Borromean rings: A presentation for the fundamental group

$$
G=\pi_{1}(X)=\left\langle x, y, z \mid z y z^{-1} x z y y^{-1} z^{-1}=y x y^{-1}, x z x^{-1} y x z^{-1} x=z y z^{-1}\right\rangle .
$$

Example (Borromean rings)

Let X be the complement in \mathbb{S}^{3} of the Borromean rings:
A presentation for the fundamental group

$$
G=\pi_{1}(X)=\left\langle x, y, z \mid z y z^{-1} x z y^{-1} z^{-1}=y x y^{-1}, x z x^{-1} y x z^{-1} x=z y z^{-1}\right\rangle .
$$

- $\mathbb{C}\left[G_{\mathrm{ab}}\right]=\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}\right]$.

Example (Borromean rings)

Let X be the complement in \mathbb{S}^{3} of the Borromean rings:
A presentation for the fundamental group

$$
G=\pi_{1}(X)=\left\langle x, y, z \mid z y z^{-1} x z y y^{-1} z^{-1}=y x y^{-1}, x z x^{-1} y x z^{-1} x=z y z^{-1}\right\rangle .
$$

- $\mathbb{C}\left[G_{\mathrm{ab}}\right]=\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}\right]$.
- $A(G)=\operatorname{coker}\left(\begin{array}{ccc}0 & \left(t_{3}-1\right)\left(1-t_{1}\right) & \left(1-t_{1}\right)\left(1-t_{2}\right) \\ \left(1-t_{2}\right)\left(1-t_{3}\right) & 0 & \left(t_{1}-1\right)\left(1-t_{2}\right)\end{array}\right)$

Example (Borromean rings)

Let X be the complement in \mathbb{S}^{3} of the Borromean rings:
A presentation for the fundamental group

$$
G=\pi_{1}(X)=\left\langle x, y, z \mid z y z^{-1} x z y^{-1} z^{-1}=y x y y^{-1}, x z x^{-1} y x z^{-1} x=z y z^{-1}\right\rangle .
$$

- $\mathbb{C}\left[G_{\mathrm{ab}}\right]=\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}\right]$.
- $A(G)=\operatorname{coker}\left(\begin{array}{ccc}0 & \left(t_{3}-1\right)\left(1-t_{1}\right) & \left(1-t_{1}\right)\left(1-t_{2}\right) \\ \left(1-t_{2}\right)\left(1-t_{3}\right) & 0 & \left(t_{1}-1\right)\left(1-t_{2}\right)\end{array}\right)$
- $B(G)=\operatorname{coker}\left(\begin{array}{ccc}t_{3}-1 & 0 & 0 \\ 0 & t_{2}-1 & 0 \\ 0 & 0 & t_{1}-1\end{array}\right)$

Example (Borromean rings)

Let X be the complement in \mathbb{S}^{3} of the Borromean rings:
A presentation for the fundamental group

$$
G=\pi_{1}(X)=\left\langle x, y, z \mid z y z^{-1} x z y y^{-1} z^{-1}=y x y^{-1}, x z x^{-1} y x z^{-1} x=z y z^{-1}\right\rangle .
$$

- $\mathbb{C}\left[G_{\mathrm{ab}}\right]=\mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, t_{3}^{ \pm 1}\right]$.
- $A(G)=\operatorname{coker}\left(\begin{array}{ccc}0 & \left(t_{3}-1\right)\left(1-t_{1}\right) & \left(1-t_{1}\right)\left(1-t_{2}\right) \\ \left(1-t_{2}\right)\left(1-t_{3}\right) & 0 & \left(t_{1}-1\right)\left(1-t_{2}\right)\end{array}\right)$
- $B(G)=\operatorname{coker}\left(\begin{array}{ccc}t_{3}-1 & 0 & 0 \\ 0 & t_{2}-1 & 0 \\ 0 & 0 & t_{1}-1\end{array}\right)$
- The Alexander variety $\mathcal{W}_{1}^{1}(X, \mathbb{C})=\left\{t_{1}=1\right\} \cup\left\{t_{2}=1\right\} \cup\left\{t_{3}=1\right\}=\left(\mathbb{C}^{*}\right)^{2} \cup\left(\mathbb{C}^{*}\right)^{2} \cup\left(\mathbb{C}^{*}\right)^{2} ;$ $\mathcal{W}_{2}^{1}(X, \mathbb{C})=\left\{t_{1}=t_{2}=1\right\} \cup\left\{t_{2}=t_{3}=1\right\} \cup\left\{t_{3}=t_{1}=1\right\} ;$ $\mathcal{W}_{3}^{1}(X, \mathbb{C})=\{1\}$.

The characteristic varieties

- The rank 1 local system on X is a 1 -dimensional \mathbb{C}-vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$-module structure $\mathbb{C}_{\rho} \times G \rightarrow \mathbb{C}_{\rho}$ given by $\rho(g) \cdot$ a for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.

The characteristic varieties

- The rank 1 local system on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$-module structure $\mathbb{C}_{\rho} \times G \rightarrow \mathbb{C}_{\rho}$ given by $\rho(g) \cdot$ a for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- $H_{i}\left(X, \mathbb{C}_{\rho}\right):=H_{i}\left(C_{*}(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C} G} \mathbb{C}_{\rho}\right)$ the homology group of X with coefficient \mathbb{C}_{ρ}.

The characteristic varieties

- The rank 1 local system on X is a 1 -dimensional \mathbb{C}-vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$-module structure $\mathbb{C}_{\rho} \times G \rightarrow \mathbb{C}_{\rho}$ given by $\rho(g) \cdot$ a for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- $H_{i}\left(X, \mathbb{C}_{\rho}\right):=H_{i}\left(C_{*}(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C} G} \mathbb{C}_{\rho}\right)$ the homology group of X with coefficient \mathbb{C}_{ρ}.

Definition

The characteristic varieties of X over \mathbb{C} are the Zariski closed subsets

$$
\mathcal{V}_{d}^{i}(X, \mathbb{C})=\left\{\rho \in \mathbb{T}(X)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \mid \operatorname{dim}_{\mathbb{C}} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geq d\right\}
$$

for $i \geq 1$ and $d \geq 1$.

The characteristic varieties

- The rank 1 local system on X is a 1 -dimensional \mathbb{C}-vector space \mathbb{C}_{ρ} with a right $\mathbb{C} G$-module structure $\mathbb{C}_{\rho} \times G \rightarrow \mathbb{C}_{\rho}$ given by $\rho(g) \cdot$ a for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$.
- $H_{i}\left(X, \mathbb{C}_{\rho}\right):=H_{i}\left(C_{*}(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C} G} \mathbb{C}_{\rho}\right)$ the homology group of X with coefficient \mathbb{C}_{ρ}.

Definition

The characteristic varieties of X over \mathbb{C} are the Zariski closed subsets

$$
\mathcal{V}_{d}^{i}(X, \mathbb{C})=\left\{\rho \in \mathbb{T}(X)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \mid \operatorname{dim}_{\mathbb{C}} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geq d\right\}
$$

for $i \geq 1$ and $d \geq 1$.

Proposition (Papadima,Suciu10)

$$
\bigcup_{i=0}^{q} \mathcal{V}_{1}^{i}(X, \mathbb{C})=\bigcup_{i=0}^{q} \mathcal{W}_{1}^{i}(X, \mathbb{C})
$$

The resonance varieties

- $A=H^{*}(G, \mathbb{C})$. For each $a \in A^{1}$, we have $a^{2}=0$.

The resonance varieties

- $A=H^{*}(G, \mathbb{C})$. For each $a \in A^{1}$, we have $a^{2}=0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$
(A, a): A^{0} \xrightarrow{a \cup-} A^{1} \xrightarrow{a \cup-} A^{2} \xrightarrow{a \cup-} \cdots,
$$

with differentials given by left-multiplication by a.

The resonance varieties

- $A=H^{*}(G, \mathbb{C})$. For each $a \in A^{1}$, we have $a^{2}=0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$
(A, a): A^{0} \xrightarrow{a \cup-} A^{1} \xrightarrow{a \cup-} A^{2} \xrightarrow{a \cup-} \cdots,
$$

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A^{1}

$$
\mathcal{R}_{d}^{i}(G, \mathbb{C})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{C}} H^{i}(A ; a) \geq d\right\}
$$

defined for all integers $i \geq 1$ and $d \geq 1$.

The resonance varieties

- $A=H^{*}(G, \mathbb{C})$. For each $a \in A^{1}$, we have $a^{2}=0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$
(A, a): A^{0} \xrightarrow{a \cup-} A^{1} \xrightarrow{a \cup-} A^{2} \xrightarrow{a \cup-} \cdots,
$$

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A^{1}

$$
\mathcal{R}_{d}^{i}(G, \mathbb{C})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{C}} H^{i}(A ; a) \geq d\right\}
$$

defined for all integers $i \geq 1$ and $d \geq 1$.

- $\mathcal{R}_{1}^{1}\left(T^{n}, \mathbb{C}\right)=\{0\} ;$
- $\mathcal{R}_{1}^{1}\left(\Sigma_{g}, \mathbb{C}\right)=\mathbb{C}^{2 g}, g \geq 2$.

1-Formality and Tangent Cone Theorem

- A space X is 1 -formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2 .

1-Formality and Tangent Cone Theorem

- A space X is 1 -formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1 -formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

1-Formality and Tangent Cone Theorem

- A space X is 1 -formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1 -formal if the Eilenberg-MacLane space $K(G, 1)$ is 1 -formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1 -formal, then the tangent cone $\mathrm{TC}_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)$ equals $\mathcal{R}_{d}^{1}(G, \mathbb{C})$. Moreover, $\mathcal{R}_{d}^{1}(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^{1}(G, \mathbb{C})$.

1-Formality and Tangent Cone Theorem

- A space X is 1 -formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1 -formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1 -formal, then the tangent cone $\mathrm{TC}_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)$ equals $\mathcal{R}_{d}^{1}(G, \mathbb{C})$. Moreover, $\mathcal{R}_{d}^{1}(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^{1}(G, \mathbb{C})$.

Example (Borromean link again)

- $\mathcal{R}_{d}^{1}(X, \mathbb{C})=H^{1}(X ; \mathbb{C})=\mathbb{C}^{3}$ for $d \leq 3$.

1-Formality and Tangent Cone Theorem

- A space X is 1-formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1 -formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1 -formal, then the tangent cone $\mathrm{TC}_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)$ equals $\mathcal{R}_{d}^{1}(G, \mathbb{C})$. Moreover, $\mathcal{R}_{d}^{1}(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^{1}(G, \mathbb{C})$.

Example (Borromean link again)

- $\mathcal{R}_{d}^{1}(X, \mathbb{C})=H^{1}(X ; \mathbb{C})=\mathbb{C}^{3}$ for $d \leq 3$.
- $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(G, \mathbb{C})\right)=\left\{x_{1}=0\right\} \cup\left\{x_{2}=0\right\} \cup\left\{x_{3}=0\right\}$.

1-Formality and Tangent Cone Theorem

- A space X is 1 -formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1 -formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1 -formal, then the tangent cone $\mathrm{TC}_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)$ equals $\mathcal{R}_{d}^{1}(G, \mathbb{C})$. Moreover, $\mathcal{R}_{d}^{1}(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^{1}(G, \mathbb{C})$.

Example (Borromean link again)

- $\mathcal{R}_{d}^{1}(X, \mathbb{C})=H^{1}(X ; \mathbb{C})=\mathbb{C}^{3}$ for $d \leq 3$.
- $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(G, \mathbb{C})\right)=\left\{x_{1}=0\right\} \cup\left\{x_{2}=0\right\} \cup\left\{x_{3}=0\right\}$.

$\Rightarrow X$ is not 1 -formal.

The configuration spaces

Let M be a connected manifold with $\operatorname{dim}_{\mathbb{R}} M \geq 2$. The configuration space

$$
\mathcal{F}(M, n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M \times \cdots \times M \mid x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

There is a free action of S_{n} on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n)=\mathcal{F}(M, n) / S_{n}$.

The configuration spaces

Let M be a connected manifold with $\operatorname{dim}_{\mathbb{R}} M \geq 2$. The configuration space

$$
\mathcal{F}(M, n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M \times \cdots \times M \mid x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

There is a free action of S_{n} on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n)=\mathcal{F}(M, n) / S_{n}$.

- Example: The braid group $B_{n}=\pi_{1}\left(\mathcal{C}\left(\mathbb{R}^{2}, n\right)\right)$ and pure braid group $P_{n}=\pi_{1}\left(\mathcal{F}\left(\mathbb{R}^{2}, n\right)\right)$ with $1 \rightarrow P_{n} \rightarrow B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.

The configuration spaces

Let M be a connected manifold with $\operatorname{dim}_{\mathbb{R}} M \geq 2$. The configuration space

$$
\mathcal{F}(M, n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M \times \cdots \times M \mid x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

There is a free action of S_{n} on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n)=\mathcal{F}(M, n) / S_{n}$.

- Example: The braid group $B_{n}=\pi_{1}\left(\mathcal{C}\left(\mathbb{R}^{2}, n\right)\right)$ and pure braid group $P_{n}=\pi_{1}\left(\mathcal{F}\left(\mathbb{R}^{2}, n\right)\right)$ with $1 \rightarrow P_{n} \rightarrow B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_{n} are given by

$$
\theta_{1}\left(P_{n}\right)=\binom{n}{2} ; \theta_{2}\left(P_{n}\right)=\binom{n}{3} ; \theta_{k}\left(P_{n}\right)=(k-1)\binom{n+1}{4}, \text { for } k \geq 3
$$

The configuration spaces

Let M be a connected manifold with $\operatorname{dim}_{\mathbb{R}} M \geq 2$. The configuration space

$$
\mathcal{F}(M, n)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M \times \cdots \times M \mid x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

There is a free action of S_{n} on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n)=\mathcal{F}(M, n) / S_{n}$.

- Example: The braid group $B_{n}=\pi_{1}\left(\mathcal{C}\left(\mathbb{R}^{2}, n\right)\right)$ and pure braid group $P_{n}=\pi_{1}\left(\mathcal{F}\left(\mathbb{R}^{2}, n\right)\right)$ with $1 \rightarrow P_{n} \rightarrow B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_{n} are given by

$$
\theta_{1}\left(P_{n}\right)=\binom{n}{2} ; \theta_{2}\left(P_{n}\right)=\binom{n}{3} ; \theta_{k}\left(P_{n}\right)=(k-1)\binom{n+1}{4}, \text { for } k \geq 3
$$

Corollary

P_{n} is not isomorphic to $\Pi_{n}=F_{1} \times \cdots \times F_{n-1}$ for $n \geq 4$.

The pure braid groups on Riemann surface

- $P_{g, n}=\pi_{1}\left(\mathcal{F}\left(\Sigma_{g}, n\right)\right)$, where $\mathcal{F}\left(\Sigma_{g}, n\right)$ is the configuration of Σ_{g}, which is a smooth compact complex curve of genus $g(g \geq 1)$.

The pure braid groups on Riemann surface

- $P_{g, n}=\pi_{1}\left(\mathcal{F}\left(\Sigma_{g}, n\right)\right)$, where $\mathcal{F}\left(\Sigma_{g}, n\right)$ is the configuration of Σ_{g}, which is a smooth compact complex curve of genus $g(g \geq 1)$.

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of $P_{1, n}$ is

$$
\mathcal{R}_{1}^{1}\left(P_{1, n}, \mathbb{C}\right)=\left\{\begin{array}{ll}
(x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} & \begin{array}{l}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=0 \\
x_{i} y_{j}-x_{j} y_{i}=0, \text { for } 1<i<j \leq n
\end{array}
\end{array}\right\}
$$

The pure braid groups on Riemann surface

- $P_{g, n}=\pi_{1}\left(\mathcal{F}\left(\Sigma_{g}, n\right)\right)$, where $\mathcal{F}\left(\Sigma_{g}, n\right)$ is the configuration of Σ_{g}, which is a smooth compact complex curve of genus $g(g \geq 1)$.

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of $P_{1, n}$ is

$$
\mathcal{R}_{1}^{1}\left(P_{1, n}, \mathbb{C}\right)=\left\{\begin{array}{ll}
(x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} & \begin{array}{l}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=0 \\
x_{i} y_{j}-x_{j} y_{i}=0, \text { for } 1<i<j \leq n
\end{array}
\end{array}\right\}
$$

Corollary
 $P_{n, 1}$ is not 1-formal for $n \geq 3$.

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

- The relations for $v B_{n}$ include the relations for B_{n} and S_{n}, and

$$
\begin{cases}\sigma_{i} s_{j}=s_{j} \sigma_{i}, & |i-j| \geq 2 \tag{1}\\ s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}, & i=1, \ldots, n-2\end{cases}
$$

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

- The relations for $v B_{n}$ include the relations for B_{n} and S_{n}, and

$$
\begin{cases}\sigma_{i} s_{j}=s_{j} \sigma_{i}, & |i-j| \geq 2 \tag{1}\\ s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}, & i=1, \ldots, n-2\end{cases}
$$

- $1 \rightarrow v P_{n} \rightarrow v B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

- The relations for $v B_{n}$ include the relations for B_{n} and S_{n}, and

$$
\begin{cases}\sigma_{i} s_{j}=s_{j} \sigma_{i}, & |i-j| \geq 2 \tag{1}\\ s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}, & i=1, \ldots, n-2\end{cases}
$$

- $1 \rightarrow v P_{n} \rightarrow v B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.
- The pure virtual braid groups $v P_{n}$ has presentation [Bardakov04]

$$
\left\langle x_{i j},(1 \leq i \neq j \leq n) \left\lvert\, \begin{array}{l}
x_{i j} x_{i k} x_{j k}=x_{j k} x_{i k} x_{i j} ; \\
x_{i j} x_{k l}=x_{k l} x_{i j} ; i, j, k, l \text { distinct }
\end{array}\right.\right\rangle
$$

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_{i} and s_{i} of the virtual braid groups $v B_{n}$ are

- The relations for $v B_{n}$ include the relations for B_{n} and S_{n}, and

$$
\begin{cases}\sigma_{i} s_{j}=s_{j} \sigma_{i}, & |i-j| \geq 2 \tag{1}\\ s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}, & i=1, \ldots, n-2\end{cases}
$$

- $1 \rightarrow v P_{n} \rightarrow v B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.
- The pure virtual braid groups $v P_{n}$ has presentation [Bardakov04]

$$
\left\langle x_{i j},(1 \leq i \neq j \leq n) \left\lvert\, \begin{array}{l}
x_{i j} x_{i k} x_{j k}=x_{j k} x_{i k} x_{i j} ; \\
x_{i j} x_{k l}=x_{k l} x_{i j} ; i, j, k, l \text { distinct }
\end{array}\right.\right\rangle
$$

- $v P_{n}^{+}$is the quotient of $v P_{n}$ by the relations $x_{i j} x_{j i}=1$ for $i \neq j$.

Theorem (Suciu, W. 15)

The pure virtual braid groups $v P_{n}$ and $v P_{n}^{+}$are 1-formal if and only if $n \leq 3$.

Theorem (Suciu, W. 15)

The pure virtual braid groups $v P_{n}$ and $v P_{n}^{+}$are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms

Theorem (Suciu, W. 15)

The pure virtual braid groups $v P_{n}$ and $v P_{n}^{+}$are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms

Lemma

Suppose there is a split monomorphism $\iota: N \hookrightarrow G$. If G is 1 -formal, then N is also 1 -formal.

Lemma
The group $v P_{3}$ is 1-formal.

Lemma

The group $v P_{3}$ is 1 -formal.
Next we show that $v P_{4}^{+}$is not 1 -formal.

Lemma

The group $v P_{3}$ is 1 -formal.
Next we show that $v P_{4}^{+}$is not 1 -formal.

Lemma

The first resonance variety $\mathcal{R}_{1}^{1}\left(v P_{4}^{+}, \mathbb{C}\right)$ is the subvariety of \mathbb{C}^{6} given by the equations

$$
\begin{aligned}
& x_{12} x_{24}\left(x_{13}+x_{23}\right)+x_{13} x_{34}\left(x_{12}-x_{23}\right)-x_{24} x_{34}\left(x_{12}+x_{13}\right)=0, \\
& x_{12} x_{23}\left(x_{14}+x_{24}\right)+x_{12} x_{34}\left(x_{23}-x_{14}\right)+x_{14} x_{34}\left(x_{23}+x_{24}\right)=0, \\
& x_{13} x_{23}\left(x_{14}+x_{24}\right)+x_{14} x_{24}\left(x_{13}+x_{23}\right)+x_{34}\left(x_{13} x_{23}-x_{14} x_{24}\right)=0, \\
& x_{12}\left(x_{13} x_{14}-x_{23} x_{24}\right)+x_{34}\left(x_{13} x_{23}-x_{14} x_{24}\right)=0 .
\end{aligned}
$$

Lemma

The group $v P_{3}$ is 1 -formal.
Next we show that $v P_{4}^{+}$is not 1 -formal.

Lemma

The first resonance variety $\mathcal{R}_{1}^{1}\left(v P_{4}^{+}, \mathbb{C}\right)$ is the subvariety of \mathbb{C}^{6} given by the equations

$$
\begin{aligned}
& x_{12} x_{24}\left(x_{13}+x_{23}\right)+x_{13} x_{34}\left(x_{12}-x_{23}\right)-x_{24} x_{34}\left(x_{12}+x_{13}\right)=0, \\
& x_{12} x_{23}\left(x_{14}+x_{24}\right)+x_{12} x_{34}\left(x_{23}-x_{14}\right)+x_{14} x_{34}\left(x_{23}+x_{24}\right)=0, \\
& x_{13} x_{23}\left(x_{14}+x_{24}\right)+x_{14} x_{24}\left(x_{13}+x_{23}\right)+x_{34}\left(x_{13} x_{23}-x_{14} x_{24}\right)=0, \\
& x_{12}\left(x_{13} x_{14}-x_{23} x_{24}\right)+x_{34}\left(x_{13} x_{23}-x_{14} x_{24}\right)=0 .
\end{aligned}
$$

\Rightarrow The group $v P_{4}^{+}$is not 1-formal.

The pure welded braid groups (McCool groups)

- The welded braid group $w B_{n}$ has the same generators as $v B_{n}$, adding one more class of relations

$$
\sigma_{i} \sigma_{i+1} s_{i}=s_{i+1} \sigma_{i} \sigma_{i+1}, i=1,2, \ldots, n-2
$$

- $1 \rightarrow w P_{n} \rightarrow w B_{n} \xrightarrow{\rho} S_{n} \rightarrow 1$.
- The pure welded braid groups $w P_{n}$ has presentation [McCool 86]

$$
\left\langle x_{i j},(1 \leq i \neq j \leq n) \left\lvert\, \begin{array}{l}
x_{i j} x_{i k} x_{j k}=x_{j k} x_{i k} x_{i j} ; \\
x_{i j} x_{k l}=x_{k l} x_{i j} ; i, j, k, I \text { distinct } \\
x_{i j} x_{k j}=x_{k j} x_{i j} ; i, j, k \text { distinct }
\end{array}\right.\right\rangle
$$

- There is a subgroup of $w P_{n}$ generated by the $x_{i j}$ for $1 \leq i<j \leq n$, denoted by $w P_{n}^{+}$. The group $w P_{n}$ is called McCool group and $w P_{n}^{+}$is called upper McCool group.

Theorem (D.Cohen 09)

The first resonance variety of McCool group $w P_{n}$ is

$$
\mathcal{R}_{1}^{1}\left(w P_{n}, \mathbb{C}\right)=\bigcup_{1 \leq i<j \leq n} C_{i j} \cup \bigcup_{1 \leq i<j<k \leq n} C_{i j k},
$$

where $C_{i j}=\mathbb{C}^{2}$ and $C_{i j k}=\mathbb{C}^{3}$.

Theorem (D.Cohen 09)

The first resonance variety of McCool group $w P_{n}$ is

$$
\mathcal{R}_{1}^{1}\left(w P_{n}, \mathbb{C}\right)=\bigcup_{1 \leq i<j \leq n} C_{i j} \cup \bigcup_{1 \leq i<j<k \leq n} C_{i j k},
$$

where $C_{i j}=\mathbb{C}^{2}$ and $C_{i j k}=\mathbb{C}^{3}$.

Theorem (Suciu, W. 15)

The first resonance variety of upper McCool group w P_{n}^{+}is

$$
\mathcal{R}_{1}^{1}\left(w P_{n}^{+}, \mathbb{C}\right)=\bigcup_{1 \leq i<j \leq n-1} C_{i, j}
$$

where $C_{i, j}=\mathbb{C}^{j+1}$.

Future work

- The relations between the Chen ranks $\theta_{k}(G)$ and $\mathcal{R}_{1}^{1}(G)$

$$
\theta_{k}(G)=\sum_{m \geq 2} c_{m} \cdot \theta_{k}\left(F_{m}\right)
$$

where c_{m} is the number of m-dimensional components of $\mathcal{R}_{1}^{1}(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

Future work

- The relations between the Chen ranks $\theta_{k}(G)$ and $\mathcal{R}_{1}^{1}(G)$

$$
\theta_{k}(G)=\sum_{m \geq 2} c_{m} \cdot \theta_{k}\left(F_{m}\right)
$$

where c_{m} is the number of m-dimensional components of $\mathcal{R}_{1}^{1}(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

- The relations between the Chen ranks $\theta_{k}(G)$ and $\mathcal{V}_{1}^{1}(G)$. Replace c_{m} in the above formula by the number of m-dimensional components of $T C_{1}\left(\mathcal{V}_{1}(G)\right)$.

Future work

- The relations between the Chen ranks $\theta_{k}(G)$ and $\mathcal{R}_{1}^{1}(G)$

$$
\theta_{k}(G)=\sum_{m \geq 2} c_{m} \cdot \theta_{k}\left(F_{m}\right)
$$

where c_{m} is the number of m-dimensional components of $\mathcal{R}_{1}^{1}(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

- The relations between the Chen ranks $\theta_{k}(G)$ and $\mathcal{V}_{1}^{1}(G)$. Replace c_{m} in the above formula by the number of m-dimensional components of $T C_{1}\left(\mathcal{V}_{1}(G)\right)$.

Thank You!

