Cohomology jump loci of configuration spaces

He Wang (Joint with Alexander Suciu)

Northeastern University

Special Session on Algebraic Structures Motivated by and Applied to Knot Theory

Spring Eastern Sectional Meeting, Washington, DC

March 8, 2015

Overview

- X : connected finite CW-complex.
- $G := \pi_1(X, x_0).$

- X : connected finite CW-complex.
- $G := \pi_1(X, x_0).$
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab} .

- X : connected finite CW-complex.
- $G := \pi_1(X, x_0).$
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab} .
- The "Crowell exact sequence" of X as $\mathbb{Z}[G_{ab}]$ -modules:

$$0 \longrightarrow H_1(X^{\mathsf{ab}}; \mathbb{Z}) \longrightarrow H_1(X^{\mathsf{ab}}, F; \mathbb{Z}) \longrightarrow I(G_{\mathsf{ab}}) \longrightarrow 0$$

where $I(G_{ab}) = \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- X : connected finite CW-complex.
- $G := \pi_1(X, x_0).$
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab}.
- The "Crowell exact sequence" of X as $\mathbb{Z}[G_{ab}]$ -modules:

$$0 \longrightarrow H_1(X^{\mathrm{ab}}; \mathbb{Z}) \longrightarrow H_1(X^{\mathrm{ab}}, F; \mathbb{Z}) \longrightarrow I(G_{\mathrm{ab}}) \longrightarrow 0$$

where $I(G_{ab}) = \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- Alexander module $A(G) := H_1(X^{ab}, F; \mathbb{Z}).$
- Alexander invariant $B(G) = H_1(X^{ab}; \mathbb{Z}) = G'/G''$, where G'' = [G', G'] is the second derived subgroup.

- X : connected finite CW-complex.
- $G := \pi_1(X, x_0).$
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab} .
- The "Crowell exact sequence" of X as $\mathbb{Z}[G_{ab}]$ -modules:

$$0 \longrightarrow H_1(X^{\mathrm{ab}}; \mathbb{Z}) \longrightarrow H_1(X^{\mathrm{ab}}, F; \mathbb{Z}) \longrightarrow I(G_{\mathrm{ab}}) \longrightarrow 0$$

where $I(G_{ab}) = \ker \epsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- Alexander module $A(G) := H_1(X^{ab}, F; \mathbb{Z}).$
- Alexander invariant $B(G) = H_1(X^{ab}; \mathbb{Z}) = G'/G''$, where G'' = [G', G'] is the second derived subgroup.
- The $\mathbb{Z}[G_{ab}]$ -module structure on B(G) is determined by the extension

$$0 \rightarrow G'/G'' \rightarrow G/G'' \rightarrow G/G' \rightarrow 0.$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.

- The lower central series G: $\Gamma_1 G = G$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \ge 1$.
- The *Chen Lie algebra* of a group *G* is defined to be

$$\operatorname{gr}(G/G''; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \Bbbk.$$

• The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \Bbbk) \twoheadrightarrow gr(G/G''; \Bbbk)$.

- The lower central series $G: \Gamma_1 G = G, \Gamma_{k+1} G = [\Gamma_k G, G], k \ge 1$.
- The *Chen Lie algebra* of a group *G* is defined to be

$$\operatorname{gr}(G/G''; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \Bbbk.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \Bbbk) \twoheadrightarrow gr(G/G''; \Bbbk)$.
- The *Chen ranks* of *G* are defined as θ_k(*G*) := rank(gr_k(*G*/*G*"; k)).
 θ_k(*F_n*) = (k − 1)(^{n+k-2}), k ≥ 2. [Chen51]

- The lower central series $G: \Gamma_1 G = G, \Gamma_{k+1} G = [\Gamma_k G, G], k \ge 1$.
- The *Chen Lie algebra* of a group *G* is defined to be

$$\operatorname{gr}(G/G''; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \Bbbk.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \Bbbk) \twoheadrightarrow gr(G/G''; \Bbbk)$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \operatorname{rank}(\operatorname{gr}_k(G/G''; \Bbbk))$.
- $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}, \ k \ge 2.$ [Chen51]
- The module B(G) has an *I*-adic filtration $\{I^k B(G)\}_{k\geq 0}$.
- $gr(B(G)) = \bigoplus_{k \ge 0} I^k B(G) / I^{k+1} B(G)$ is a graded $gr(\mathbb{Z}[G_{ab}])$ -module.

- The lower central series $G: \Gamma_1 G = G, \Gamma_{k+1} G = [\Gamma_k G, G], k \ge 1$.
- The *Chen Lie algebra* of a group *G* is defined to be

$$\operatorname{gr}(G/G''; \Bbbk) := \bigoplus_{k \ge 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \Bbbk.$$

- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \Bbbk) \twoheadrightarrow gr(G/G''; \Bbbk)$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \operatorname{rank}(\operatorname{gr}_k(G/G''; \Bbbk))$.
- $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}, \ k \ge 2.$ [Chen51]
- The module B(G) has an *I*-adic filtration $\{I^k B(G)\}_{k\geq 0}$.
- $gr(B(G)) = \bigoplus_{k \ge 0} I^k B(G) / I^{k+1} B(G)$ is a graded $gr(\mathbb{Z}[G_{ab}])$ -module.

Proposition (Massey 80)

For each $k \ge 2$, there exists an isomorphism

$$\operatorname{gr}_k(G/G'') \cong \operatorname{gr}_{k-2}(B(G)).$$

Definition (Libgober 1992)

The *Alexander variety* of *X* (over \mathbb{C})

$$\mathcal{W}_d^i(X,\mathbb{C}) = V(E_{d-1}(H_i(X^{\mathrm{ab}},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_{d}^{i}(X,\mathbb{C}) = V(E_{d-1}(H_{i}(X^{ab},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

The character variety T(X) := Hom(G, C*) = Hom(G_{ab}, C*) is an algebraic group, with multiplication f₁ ∘ f₂(g) = f₁(g)f₂(g) and identity id(g) = 1 for g ∈ G and f_i ∈ Hom(G, C*).

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_{d}^{i}(X,\mathbb{C}) = V(E_{d-1}(H_{i}(X^{ab},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety T(X) := Hom(G, C*) = Hom(G_{ab}, C*) is an algebraic group, with multiplication f₁ ∘ f₂(g) = f₁(g)f₂(g) and identity id(g) = 1 for g ∈ G and f_i ∈ Hom(G, C*).
- The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_{d}^{i}(X,\mathbb{C}) = V(E_{d-1}(H_{i}(X^{ab},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity id(g) = 1 for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.
- $\mathcal{W}^1_d(G,\mathbb{C}) = V(E_{d-1}(B(G)\otimes\mathbb{C})) = V(E_d(A(G)\otimes\mathbb{C}))$ for $d \ge 1$.

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_{d}^{i}(X,\mathbb{C}) = V(E_{d-1}(H_{i}(X^{ab},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity id(g) = 1 for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.

•
$$\mathcal{W}^1_d(G,\mathbb{C}) = V(E_{d-1}(B(G)\otimes\mathbb{C})) = V(E_d(A(G)\otimes\mathbb{C}))$$
 for $d \ge 1$.

• $\mathcal{W}_1^1(T^n,\mathbb{C}) = \{1\}.$

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_{d}^{i}(X,\mathbb{C}) = V(E_{d-1}(H_{i}(X^{\mathsf{ab}},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The character variety $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity id(g) = 1 for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The *i*-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$ -module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension *i* minors of the presentation matrix.

•
$$\mathcal{W}^1_d(G,\mathbb{C}) = V(E_{d-1}(B(G)\otimes\mathbb{C})) = V(E_d(A(G)\otimes\mathbb{C}))$$
 for $d \ge 1$.

- $\mathcal{W}_1^1(T^n,\mathbb{C}) = \{1\}.$
- $\mathcal{W}^1_d(\Sigma_g,\mathbb{C})=(\mathbb{C}^*)^{2g}$ for g>1, d<2g-1.

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

•
$$\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}].$$

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

•
$$\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}].$$

• $A(G) = \operatorname{coker} \begin{pmatrix} 0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\ (1 - t_2)(1 - t_3) & 0 & (t_1 - 1)(1 - t_2) \end{pmatrix}$

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

•
$$\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}].$$

• $A(G) = \operatorname{coker} \begin{pmatrix} 0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\ (1 - t_2)(1 - t_3) & 0 & (t_1 - 1)(1 - t_2) \end{pmatrix}$
• $B(G) = \operatorname{coker} \begin{pmatrix} t_3 - 1 & 0 & 0 \\ 0 & t_2 - 1 & 0 \\ 0 & 0 & t_1 - 1 \end{pmatrix}$

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

•
$$\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}].$$

• $A(G) = \operatorname{coker} \begin{pmatrix} 0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\ (1 - t_2)(1 - t_3) & 0 & (t_1 - 1)(1 - t_2) \end{pmatrix}$
• $B(G) = \operatorname{coker} \begin{pmatrix} t_3 - 1 & 0 & 0 \\ 0 & t_2 - 1 & 0 \\ 0 & 0 & t_1 - 1 \end{pmatrix}$

• The Alexander variety

$$\mathcal{W}_1^1(X, \mathbb{C}) = \{t_1 = 1\} \cup \{t_2 = 1\} \cup \{t_3 = 1\} = (\mathbb{C}^*)^2 \cup (\mathbb{C}^*)^2 \cup (\mathbb{C}^*)^2;$$

 $\mathcal{W}_2^1(X, \mathbb{C}) = \{t_1 = t_2 = 1\} \cup \{t_2 = t_3 = 1\} \cup \{t_3 = t_1 = 1\};$
 $\mathcal{W}_3^1(X, \mathbb{C}) = \{1\}.$

• The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.

- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- *H_i*(*X*, ℂ_ρ) := *H_i*(*C*_{*}(*X̃*, ℂ) ⊗_{ℂG} ℂ_ρ) the homology group of *X* with coefficient ℂ_ρ.

- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- *H_i*(*X*, ℂ_ρ) := *H_i*(*C*_{*}(*X̃*, ℂ) ⊗_{ℂG} ℂ_ρ) the homology group of *X* with coefficient ℂ_ρ.

Definition

The *characteristic varieties* of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}_d^i(X,\mathbb{C}) = \{ \rho \in \mathbb{T}(X) = \operatorname{Hom}(G,\mathbb{C}^*) \mid \dim_{\mathbb{C}} H_i(X,\mathbb{C}_{\rho}) \geq d \}$$

for $i \ge 1$ and $d \ge 1$.

- The rank 1 local system on X is a 1-dimensional \mathbb{C} -vector space \mathbb{C}_{ρ} with a right $\mathbb{C}G$ -module structure $\mathbb{C}_{\rho} \times G \to \mathbb{C}_{\rho}$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_{\rho}$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- *H_i(X, C_ρ) := H_i(C_{*}(X̃, C) ⊗_{CG} C_ρ)* the homology group of X with coefficient C_ρ.

Definition

The *characteristic varieties* of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}^{i}_{d}(X,\mathbb{C}) = \{ \rho \in \mathbb{T}(X) = \operatorname{Hom}(G,\mathbb{C}^{*}) \mid \dim_{\mathbb{C}} H_{i}(X,\mathbb{C}_{\rho}) \geq d \}$$

for $i \geq 1$ and $d \geq 1$.

Proposition (Papadima, Suciu10)

$$\bigcup_{i=0}^q \mathcal{V}_1^i(X,\mathbb{C}) = \bigcup_{i=0}^q \mathcal{W}_1^i(X,\mathbb{C}).$$

•
$$A = H^*(G, \mathbb{C})$$
. For each $a \in A^1$, we have $a^2 = 0$.

• $A = H^*(G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.

 $\bullet\,$ Define a cochain complex of finite-dimensional $\mathbb C\text{-vector}$ spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

• $A = H^*(G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.

• Define a cochain complex of finite-dimensional C-vector spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}^i_d(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \ge d \},$$

defined for all integers $i \ge 1$ and $d \ge 1$.

• $A = H^*(G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.

 $\bullet\,$ Define a cochain complex of finite-dimensional $\mathbb C\text{-vector}$ spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

Definition

The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}^i_d(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \ge d \},$$

defined for all integers $i \ge 1$ and $d \ge 1$.

•
$$\mathcal{R}^{1}_{1}(T^{n},\mathbb{C}) = \{0\};$$

•
$$\mathcal{R}^1_1(\Sigma_g, \mathbb{C}) = \mathbb{C}^{2g}, \ g \ge 2.$$

 A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.

- A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space K(G, 1) is 1-formal.

- A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space K(G, 1) is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}^1_d(G,\mathbb{C}))$ equals $\mathcal{R}^1_d(G,\mathbb{C})$. Moreover, $\mathcal{R}^1_d(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

- A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space K(G, 1) is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}^1_d(G,\mathbb{C}))$ equals $\mathcal{R}^1_d(G,\mathbb{C})$. Moreover, $\mathcal{R}^1_d(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

Example (Borromean link again)

•
$$\mathcal{R}^1_d(X,\mathbb{C}) = H^1(X;\mathbb{C}) = \mathbb{C}^3$$
 for $d \leq 3$.

- A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space K(G, 1) is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}^1_d(G,\mathbb{C}))$ equals $\mathcal{R}^1_d(G,\mathbb{C})$. Moreover, $\mathcal{R}^1_d(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

Example (Borromean link again)

•
$$\mathcal{R}^1_d(X,\mathbb{C}) = H^1(X;\mathbb{C}) = \mathbb{C}^3$$
 for $d \leq 3$.

• $\mathsf{TC}_1(\mathcal{V}_1^1(G,\mathbb{C})) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}.$

- A space X is 1-formal if there exists a cdga morphism from the minimal model M(X) to (H^{*}(X, ℚ), 0) inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space K(G, 1) is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $\mathsf{TC}_1(\mathcal{V}^1_d(G,\mathbb{C}))$ equals $\mathcal{R}^1_d(G,\mathbb{C})$. Moreover, $\mathcal{R}^1_d(G,\mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G,\mathbb{C})$.

Example (Borromean link again)

•
$$\mathcal{R}^1_d(X,\mathbb{C}) = H^1(X;\mathbb{C}) = \mathbb{C}^3$$
 for $d \leq 3$.

• $\mathsf{TC}_1(\mathcal{V}_1^1(G,\mathbb{C})) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}.$

 $\Rightarrow X$ is not 1-formal.

Let *M* be a connected manifold with dim_{\mathbb{R}} $M \ge 2$. The configuration space

$$\mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

Let *M* be a connected manifold with dim_{\mathbb{R}} $M \ge 2$. The configuration space

$$\mathcal{F}(M,n) = \{(x_1,\cdots,x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

• Example: The braid group $B_n = \pi_1(\mathcal{C}(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \to P_n \to B_n \xrightarrow{\rho} S_n \to 1$.

Let *M* be a connected manifold with dim_{\mathbb{R}} $M \ge 2$. The configuration space

$$\mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

• Example: The braid group $B_n = \pi_1(\mathcal{C}(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \to P_n \to B_n \xrightarrow{\rho} S_n \to 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_n are given by

$$\theta_1(P_n) = \binom{n}{2}; \ \theta_2(P_n) = \binom{n}{3}; \ \theta_k(P_n) = (k-1)\binom{n+1}{4}, \ for \ k \ge 3$$

Let *M* be a connected manifold with dim_{\mathbb{R}} $M \ge 2$. The configuration space

$$\mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

• Example: The braid group $B_n = \pi_1(\mathcal{C}(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \to P_n \to B_n \xrightarrow{\rho} S_n \to 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_n are given by

$$\theta_1(P_n) = \binom{n}{2}; \ \theta_2(P_n) = \binom{n}{3}; \ \theta_k(P_n) = (k-1)\binom{n+1}{4}, \ for \ k \ge 3$$

Corollary

$$P_n$$
 is not isomorphic to $\Pi_n = F_1 \times \cdots \times F_{n-1}$ for $n \ge 4$.

The pure braid groups on Riemann surface

• $P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n))$, where $\mathcal{F}(\Sigma_g, n)$ is the configuration of Σ_g , which is a smooth compact complex curve of genus g ($g \ge 1$).

The pure braid groups on Riemann surface

• $P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n))$, where $\mathcal{F}(\Sigma_g, n)$ is the configuration of Σ_g , which is a smooth compact complex curve of genus $g \ (g \ge 1)$.

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of $P_{1,n}$ is

$$\mathcal{R}^{1}_{1}(P_{1,n},\mathbb{C}) = \left\{ (x,y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{c} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0 \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 < i < j \le n \end{array} \right\}$$

The pure braid groups on Riemann surface

• $P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n))$, where $\mathcal{F}(\Sigma_g, n)$ is the configuration of Σ_g , which is a smooth compact complex curve of genus $g \ (g \ge 1)$.

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of $P_{1,n}$ is

$$\mathcal{R}^{1}_{1}(P_{1,n},\mathbb{C}) = \left\{ (x,y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{c} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0 \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 < i < j \le n \end{array} \right\}$$

Corollary

 $P_{n,1}$ is not 1-formal for $n \geq 3$.

• The virtual braids comes from the virtual knot theory by Kauffman.

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

• The relations for vB_n include the relations for B_n and S_n , and $\begin{cases}
\sigma_i s_j = s_j \sigma_i, & |i - j| \ge 2, \\
s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1}, & i = 1, \dots, n-2.
\end{cases}$

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

• The relations for vB_n include the relations for B_n and S_n , and $\begin{cases}
\sigma_i s_j = s_j \sigma_i, & |i-j| \ge 2, \\
s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1}, & i = 1, \dots, n-2.
\end{cases}$

• $1 \rightarrow vP_n \rightarrow vB_n \xrightarrow{\rho} S_n \rightarrow 1.$

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

• The relations for vB_n include the relations for B_n and S_n , and $\begin{cases}
\sigma_i s_j = s_j \sigma_i, & |i - j| \ge 2, \\
s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1}, & i = 1, \dots, n-2.
\end{cases}$

• $1 \to vP_n \to vB_n \xrightarrow{\rho} S_n \to 1.$

• The pure virtual braid groups vP_n has presentation [Bardakov04]

$$\left\langle x_{ij}, (1 \le i \ne j \le n) \right| \quad \begin{array}{c} x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij}; \\ x_{ij} x_{kl} = x_{kl} x_{ij}; i, j, k, l \text{ distinct } \end{array} \right\rangle$$

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

• The relations for vB_n include the relations for B_n and S_n , and $\begin{cases}
\sigma_i s_j = s_j \sigma_i, & |i - j| \ge 2, \\
s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1}, & i = 1, \dots, n-2.
\end{cases}$

• $1 \to vP_n \to vB_n \xrightarrow{\rho} S_n \to 1.$

• The pure virtual braid groups vP_n has presentation [Bardakov04]

$$\left\langle x_{ij}, (1 \le i \ne j \le n) \right| \quad \begin{array}{c} x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij}; \\ x_{ij} x_{kl} = x_{kl} x_{ij}; i, j, k, l \text{ distinct} \end{array} \right\rangle$$

• vP_n^+ is the quotient of vP_n by the relations $x_{ij}x_{ji} = 1$ for $i \neq j$.

Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

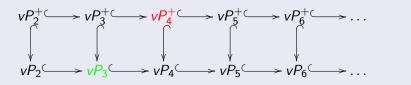
Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms



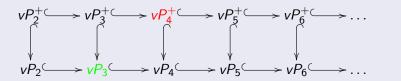
Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms



Lemma

Suppose there is a split monomorphism $\iota \colon N \hookrightarrow G$. If G is 1-formal, then N is also 1-formal.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces

The group vP_3 is 1-formal.

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.

Lemma

The first resonance variety $\mathcal{R}^1_1(vP_4^+,\mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

$$\begin{aligned} x_{12}x_{24}(x_{13}+x_{23})+x_{13}x_{34}(x_{12}-x_{23})-x_{24}x_{34}(x_{12}+x_{13})&=0,\\ x_{12}x_{23}(x_{14}+x_{24})+x_{12}x_{34}(x_{23}-x_{14})+x_{14}x_{34}(x_{23}+x_{24})&=0,\\ x_{13}x_{23}(x_{14}+x_{24})+x_{14}x_{24}(x_{13}+x_{23})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0,\\ x_{12}(x_{13}x_{14}-x_{23}x_{24})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0.\end{aligned}$$

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.

Lemma

The first resonance variety $\mathcal{R}^1_1(vP_4^+,\mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

$$\begin{aligned} x_{12}x_{24}(x_{13}+x_{23})+x_{13}x_{34}(x_{12}-x_{23})-x_{24}x_{34}(x_{12}+x_{13})&=0,\\ x_{12}x_{23}(x_{14}+x_{24})+x_{12}x_{34}(x_{23}-x_{14})+x_{14}x_{34}(x_{23}+x_{24})&=0,\\ x_{13}x_{23}(x_{14}+x_{24})+x_{14}x_{24}(x_{13}+x_{23})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0,\\ x_{12}(x_{13}x_{14}-x_{23}x_{24})+x_{34}(x_{13}x_{23}-x_{14}x_{24})&=0. \end{aligned}$$

 \Rightarrow The group vP_4^+ is not 1-formal.

The pure welded braid groups (McCool groups)

• The welded braid group *wB_n* has the same generators as *vB_n*, adding one more class of relations

$$\sigma_i\sigma_{i+1}s_i=s_{i+1}\sigma_i\sigma_{i+1}, i=1,2,\ldots,n-2.$$

•
$$1 \to wP_n \to wB_n \xrightarrow{\rho} S_n \to 1.$$

• The pure welded braid groups wP_n has presentation [McCool 86]

$$\left\langle x_{ij}, (1 \le i \ne j \le n) \middle| \begin{array}{c} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}; \\ x_{ij}x_{kl} = x_{kl}x_{ij}; i, j, k, l \text{ distinct} \\ x_{ij}x_{kj} = x_{kj}x_{ij}; i, j, k \text{ distinct} \end{array} \right\rangle$$

 There is a subgroup of wP_n generated by the x_{ij} for 1 ≤ i < j ≤ n, denoted by wP_n⁺. The group wP_n is called McCool group and wP_n⁺ is called upper McCool group.

Theorem (D.Cohen 09)

The first resonance variety of McCool group wP_n is

$$\mathcal{R}_1^1(wP_n,\mathbb{C}) = \bigcup_{1 \le i < j \le n} C_{ij} \cup \bigcup_{1 \le i < j < k \le n} C_{ijk},$$

where $C_{ij} = \mathbb{C}^2$ and $C_{ijk} = \mathbb{C}^3$.

Theorem (D.Cohen 09)

The first resonance variety of McCool group wP_n is

$$\mathcal{R}_1^1(wP_n,\mathbb{C}) = \bigcup_{1 \le i < j \le n} C_{ij} \cup \bigcup_{1 \le i < j < k \le n} C_{ijk},$$

where
$$C_{ij} = \mathbb{C}^2$$
 and $C_{ijk} = \mathbb{C}^3$.

Theorem (Suciu, W. 15)

The first resonance variety of upper McCool group wP_n^+ is

$$\mathcal{R}_1^1(wP_n^+,\mathbb{C}) = \bigcup_{1 \le i < j \le n-1} C_{i,j},$$

where $C_{i,j} = \mathbb{C}^{j+1}$.

Future work

• The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{R}^1_1(G)$

$$\theta_k(G) = \sum_{m \ge 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of *m*-dimensional components of $\mathcal{R}^1_1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

Future work

• The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{R}^1_1(G)$

$$\theta_k(G) = \sum_{m \ge 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of *m*-dimensional components of $\mathcal{R}^1_1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

• The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{V}_1^1(G)$. Replace c_m in the above formula by the number of *m*-dimensional components of $TC_1(\mathcal{V}_1(G))$.

Future work

• The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{R}^1_1(G)$

$$\theta_k(G) = \sum_{m \ge 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of *m*-dimensional components of $\mathcal{R}^1_1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

• The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{V}_1^1(G)$. Replace c_m in the above formula by the number of *m*-dimensional components of $TC_1(\mathcal{V}_1(G))$.

Thank You!